Zahlavi

Publications

[1] M. Avrigeanu et al., “Deuteron-induced reactions on manganese at low energies,” Phys. Rev. C, vol. 101, no. 2, p. 024605, Feb. 2020, doi: 10.1103/PhysRevC.101.024605.

[2] V. Burjan, J. Mrazek, and G. D’Agata, “ANC From Experimental Perspective,” Front. Astron. Space Sci., vol. 7, Nov. 2020, doi: 10.3389/fspas.2020.562466.

[3] G. G. Kiss et al., “Astrophysical S-factor for the 3He(α,γ)7Be reaction via the asymptotic normalization coefficient (ANC) method,” Physics Letters B, vol. 807, p. 135606, Aug. 2020, doi: 10.1016/j.physletb.2020.135606.

[4] M. Majerle et al., “The response of single crystal diamond detectors to 17–34 MeV neutrons,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 951, p. 163014, Jan. 2020, doi: 10.1016/j.nima.2019.163014.

[5] O. V. Ogorodnikova et al., “Positron annihilation spectroscopy study of radiation-induced defects in W and Fe irradiated with neutrons with different spectra,” Sci Rep, vol. 10, no. 1, p. 18898, Nov. 2020, doi: 10.1038/s41598-020-75737-8.

[6] A. A. Oliva et al., “Study of the neutron induced reaction 17O(n,α)14C at astrophysical energies via the Trojan Horse Method,” EPJ Web Conf., vol. 227, p. 02007, 2020, doi: 10.1051/epjconf/202022702007.

[7] R. G. Pizzone et al., “Indirect measurement of the $$^3\hbox {He}$$(n,p)$$^3\hbox {H}$$reaction cross section at Big Bang energies,” Eur. Phys. J. A, vol. 56, no. 8, p. 199, Aug. 2020, doi: 10.1140/epja/s10050-020-00212-x.

[8] A. J. M. Plompen et al., “The joint evaluated fission and fusion nuclear data library, JEFF-3.3,” Eur. Phys. J. A, vol. 56, no. 7, p. 181, Jul. 2020, doi: 10.1140/epja/s10050-020-00141-9.

[9] M. L. Sergi et al., “Indirect Measurements of n- and p-Induced Reactions of Astrophysical Interest on Oxygen Isotopes,” Front. Astron. Space Sci., vol. 7, Nov. 2020, doi: 10.3389/fspas.2020.00060.

[10] I. Siváček, Yu. E. Penionzhkevich, Yu. G. Sobolev, and S. S. Stukalov, “MULTI-2, a 4π<math><mi is="true">π</mi></math> spectrometer for total reaction cross section measurements,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 976, p. 164255, Oct. 2020, doi: 10.1016/j.nima.2020.164255.

[11] Yu. G. Sobolev et al., “Total Reaction Cross Sections for 6,8He and 9Li Nuclei on 28Si, 59Co, and 181Ta Targets,” Bull. Russ. Acad. Sci. Phys., vol. 84, no. 8, pp. 948–956, Aug. 2020, doi: 10.3103/S1062873820080286.

[12] C. Spitaleri et al., “Study of the quasi-free $$^3\hbox {He}+\,^9\hbox {Be}\rightarrow 3\alpha $$ reaction for the Trojan Horse Method,” Eur. Phys. J. A, vol. 56, no. 1, p. 18, Jan. 2020, doi: 10.1140/epja/s10050-020-00026-x.

[13] M. Stefanik, P. Bem, E. Simeckova, J. Stursa, M. Majerle, and J. Mrazek, “The p(20)+Be reaction as a source of fusion relevant neutrons,” Fusion Engineering and Design, vol. 161, p. 112053, Dec. 2020, doi: 10.1016/j.fusengdes.2020.112053.

[14] M. Stefanik, M. Cesnek, L. Sklenka, T. Kmjec, and M. Miglierini, “Neutron activation analysis of meteorites at the VR-1 training reactor,” Radiation Physics and Chemistry, vol. 171, p. 108675, Jun. 2020, doi: 10.1016/j.radphyschem.2019.108675.

[15] A. Trkov et al., “IRDFF-II: A New Neutron Metrology Library,” Nuclear Data Sheets, vol. 163, pp. 1–108, Jan. 2020, doi: 10.1016/j.nds.2019.12.001.

[16] S. Calinescu et al., “Coulomb and nuclear excitations of $^{70}\mathrm{Zn}$ and $^{68}\mathrm{Ni}$ at intermediate energy,” Phys. Rev. C, vol. 104, no. 3, p. 034318, Sep. 2021, doi: 10.1103/PhysRevC.104.034318.

[17] G. D’Agata et al., “$^{26}\mathrm{Si}(p,\ensuremath{\gamma})^{27}\mathrm{P}$ direct proton capture by means of the asymptotic normalization coefficients method for mirror nuclei,” Phys. Rev. C, vol. 103, no. 1, p. 015806, Jan. 2021, doi: 10.1103/PhysRevC.103.015806.

[18] V. Girard-Alcindor et al., “Probing nuclear forces beyond the nuclear drip line: the cases of $$^{16}$$F and $$^{15}$$F,” Eur. Phys. J. A, vol. 57, no. 3, p. 93, Mar. 2021, doi: 10.1140/epja/s10050-021-00410-1.

[19] G. G. Kiss et al., “Indirect determination of the astrophysical $S$ factor for the $^{6}\mathrm{Li}$($p,\ensuremath{\gamma})^{7}\mathrm{Be}$ reaction using the asymptotic normalization coefficient method,” Phys. Rev. C, vol. 104, no. 1, p. 015807, Jul. 2021, doi: 10.1103/PhysRevC.104.015807.

[20] X. Ledoux et al., “First beams at neutrons for science,” Eur. Phys. J. A, vol. 57, no. 8, p. 257, Aug. 2021, doi: 10.1140/epja/s10050-021-00565-x.

[21] A. Macková et al., “Small accelerators and their applications in the CANAM research infrastructure at the NPI CAS,” Eur. Phys. J.  Plus, vol. 136, no. 5, p. 558, May 2021, doi: 10.1140/epjp/s13360-021-01430-y.

[22] S. Palmerini et al., “The $$^{27}\hbox {Al}(\hbox {p},\alpha )^{24}\hbox {Mg}$$reaction at astrophysical energies studied by means of the Trojan Horse Method applied to the $$^2\hbox {H}(^{27}\hbox {Al},\alpha ^{24}\hbox {Mg})\hbox {n}$$reaction,” Eur. Phys. J.  Plus, vol. 136, no. 9, p. 898, Sep. 2021, doi: 10.1140/epjp/s13360-021-01872-4.

[23] E. Šimečková et al., “Deuteron-induced reactions on $^{\mathrm{nat}}\mathrm{Zr}$ up to 60 MeV,” Phys. Rev. C, vol. 104, no. 4, p. 044615, Oct. 2021, doi: 10.1103/PhysRevC.104.044615.

[24] E. Šimečková, M. Majerle, M. Štefánik, J. Mrázek, J. Novák, and T. Magna, “The activation cross section measurements of proton-induced reactions on Li and Ta in the energy region 12.5–34 MeV,” Nuclear Physics A, vol. 1016, p. 122310, Dec. 2021, doi: 10.1016/j.nuclphysa.2021.122310.

[25] R. Spartà et al., “$$^{10}$$B(n,$$\alpha _{0}$$)$$^{7}$$Li and $$^{10}$$B(n,$$\alpha _{1}$$)$$^{7}$$Li reactions measured via Trojan Horse Method,” Eur. Phys. J. A, vol. 57, no. 5, p. 170, May 2021, doi: 10.1140/epja/s10050-021-00481-0.

[26] C. Spitaleri et al., “The $$^3$$He+$$^5$$He$$\rightarrow $$$$\alpha $$+$$\alpha $$reaction below the Coulomb barrier via the Trojan Horse Method,” Eur. Phys. J. A, vol. 57, no. 1, p. 20, Jan. 2021, doi: 10.1140/epja/s10050-020-00324-4.

[27] V. Girard-Alcindor et al., “New narrow resonances observed in the unbound nucleus $^{15}\mathrm{F}$,” Phys. Rev. C, vol. 105, no. 5, p. L051301, May 2022, doi: 10.1103/PhysRevC.105.L051301.

[28] J. Jarošík, V. Wagner, M. Majerle, P. Chudoba, N. Burianová, and M. Štefánik, “Activation cross-section measurement of fast neutron-induced reactions in Al, Au, Bi, Co, F, Na, and Y,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 511, pp. 64–74, Jan. 2022, doi: 10.1016/j.nimb.2021.10.018.

[29] Z. Matěj et al., “The methodology for validation of cross sections in quasi monoenergetic neutron field,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1040, p. 167075, Oct. 2022, doi: 10.1016/j.nima.2022.167075.

[30] M. Okamura et al., “Demonstration of an intense lithium beam for forward-directed pulsed neutron generation,” Sci Rep, vol. 12, no. 1, p. 14016, Aug. 2022, doi: 10.1038/s41598-022-18270-0.

[31] V. V. Samarin, Yu. G. Sobolev, Yu. E. Penionzhkevich, S. S. Stukalov, M. A. Naumenko, and I. Siváček, “Investigation of Reaction Cross Sections for Beams of 8Li, 8He on 28Si, 59Co, 181Ta Targets,” Phys. Part. Nuclei, vol. 53, no. 2, pp. 595–603, Apr. 2022, doi: 10.1134/S106377962202071X.

[32] M. L. Sergi et al., “Trojan Horse Investigation for AGB Stellar Nucleosynthesis,” Universe, vol. 8, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/universe8020128.

[33] N. K. Skobelev et al., “Population of Excited States in 45Ti Nuclei in Charge Exchange Reactions in a 29-MeV 3He Beam,” Phys. Part. Nuclei, vol. 53, no. 2, pp. 382–386, Apr. 2022, doi: 10.1134/S1063779622020770.

[34] M. Stefanik, E. Simeckova, P. Bem, J. Stursa, V. Zach, and J. Mrazek, “Neutron spectrum determination of accelerator-driven d(10)+Be neutron source using the multi-foil activation technique,” Radiation Physics and Chemistry, vol. 190, p. 109767, Jan. 2022, doi: 10.1016/j.radphyschem.2021.109767.

[35] P. Tichý et al., “Monitoring mixed neutron-proton field near the primary proton and deuteron beams in spallation targets,” Indian Journal of Pure & Applied Physics (IJPAP), vol. 58, no. 4, Art. no. 4, Oct. 2022, doi: 10.56042/ijpap.v58i4.67638.

[36] C. Agodi et al., “Nuclear physics midterm plan at LNS,” Eur. Phys. J.  Plus, vol. 138, no. 11, p. 1038, Nov. 2023, doi: 10.1140/epjp/s13360-023-04358-7.

[37] P. Bartl et al., “MARGE — a new ModulAr Robotic Gas-jet targEt system for chemistry studies with homologues of superheavy elements,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1052, p. 168280, Jul. 2023, doi: 10.1016/j.nima.2023.168280.

[38] C. Fougères et al., “Search for 22Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes,” Nat Commun, vol. 14, no. 1, p. 4536, Sep. 2023, doi: 10.1038/s41467-023-40121-3.

[39] T. Issatayev, N. K. Skobelev, T. M. Shneidman, Yu. E. Penionzhkevich, V. Burjan, and J. Mrázek, “Investigation into Excited States of 46Ti Nuclei in Reactions with the 3He Beam at 29 MeV,” Phys. Part. Nuclei Lett., vol. 20, no. 5, pp. 988–994, Oct. 2023, doi: 10.1134/S1547477123050400.

[40] M. Majerle et al., “Measurements of the neutron spectra from the p+Be neutron generator of the NPI CAS,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1053, p. 168314, Aug. 2023, doi: 10.1016/j.nima.2023.168314.

[41] S. Simakov, M. Majerle, and M. Košťál, “Recoil and charged particle energy spectra from the natSi(n,x) reaction and the Si semiconductor detector response to the 14 MeV neutrons,” Radiation Physics and Chemistry, vol. 203, p. 110624, Feb. 2023, doi: 10.1016/j.radphyschem.2022.110624.

[42] M. Zmeškal et al., “Characterization of the secondary neutron field inside a cyclotron for production of radiopharmaceuticals,” Applied Radiation and Isotopes, vol. 199, p. 110865, Sep. 2023, doi: 10.1016/j.apradiso.2023.110865.

[43] M. Avrigeanu, E. Šimečková, J. Mrázek, C. Costache, and V. Avrigeanu, “Modeling of Deuteron-Induced Reactions on Molybdenum at Low Energies,” Journal of Fusion Energy, vol. 43, no. 1, p. 15, May 2024, doi: 10.1007/s10894-024-00407-w.

[44] V. Blideanu et al., “Experimental assessment and analysis of calculations accuracy for the neutron-induced radio-isotopes in copper parts of radiotherapy accelerators,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 557, p. 165553, Dec. 2024, doi: 10.1016/j.nimb.2024.165553.

[45] M. Bouteculet et al., “First production of pure 155Gd targets and 155Gd(p,x)155Tb, 156Tb cross-section measurements,” Applied Radiation and Isotopes, vol. 213, p. 111485, Nov. 2024, doi: 10.1016/j.apradiso.2024.111485.

[46] G. L. Guardo et al., “Asymptotic Normalization Coefficient Investigation of the 17O(d, p) Transfer for Astrophysical Application to the 17O(n, α)14C Reaction at Low Energies,” ApJ, vol. 975, no. 1, p. 32, Oct. 2024, doi: 10.3847/1538-4357/ad7604.

[47] T. Matlocha, J. Štursa, R. Běhal, V. Zach, and M. Čihák, “Enhanced beam extraction system at the U-120M cyclotron,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1064, p. 169335, Jul. 2024, doi: 10.1016/j.nima.2024.169335.

[48] T. Piotrowski et al., “Optimization and evaluation of structural and shielding concrete for IFMIF-DONES,” Nuclear Materials and Energy, vol. 38, p. 101597, Mar. 2024, doi: 10.1016/j.nme.2024.101597.

[49] Y. Qiu et al., “Overview of recent advancements in IFMIF-DONES neutronics activities,” Fusion Engineering and Design, vol. 201, p. 114242, Apr. 2024, doi: 10.1016/j.fusengdes.2024.114242.