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Non-Selfadjoint Operators in Quantum Physics:
Selected Aspects

Supervisor: Miloslav Znojil DrSc.

Study programme: Mathematical Engineering

Academic year: 2015/2016

Prague 2016



Acknowledgement

I wish to thank my family and friends, since they have always been great inspiration and support.

Especially, I wish to thank Miloslav Znojil DrSc. for many patient discussions broadening my

understanding in quantum physics, and generally for making this thesis possible. Last but not

least, I also wish to thank my beloved wife and my miraculous newborn daughter for being my

driving force for the past few months, and for keeping me awake at nights during the finishing

touches of this thesis.



I declare that I carried out this thesis independently and only with the cited literature and

other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000

Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical University

in Prague has the right to conclude a license agreement on the use of this work as a school work

pursuant to Section 60 paragraph 1 of the Copyright Act.

In ........ date ............ signature of the author:
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mechanika, Su-Schrieffer-Heeger, pseudospektrum

Title: Non-selfadjoint operators in quantum physics: selected aspects

Author: Frantǐsek Růžička
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Prologue

Since the early days of quantum mechanics, observables are traditionally associated with

hermitian operators. This has obviously very good and deep-rooted reasons, the reality of the

spectrum and the unitarity of time evolution. For a very long time, it seemed impossible and

absurd that an observable quantity could be ever represented by a non-hermitian operator. Of

course, the appearance of such operators in quantum mechanics per se is not new at all: they

are routinely used e.g. to describe resonances [1] or open dissipative systems [2].

The paradigm began to change slowly in the early 90s, in particular with the work of

the Stellenbosch group, nicely summarized in an influential paper [3]. After several years of

stagnation, the field obtained a vital impulse in 1998 through the work of Bender and Boettcher

[4], with their unexpected claim about the imaginary cubic oscillator. Since this moment,

non-hermitian observables presumably entered the world of mainstream physics. The theory

was quickly termed “PT-symmetric quantum mechanics”, because of the initial consensus that

PT-symmetry was the governing principle behind the reality of the spectrum. After some years,

however, it became clear that such claim was an oversimplification, and the general mechanism

is more subtle. Although the term PT-symmetry remains widely used even today, most authors

decided instead to call the newly emerged theory “quasi-hermitian quantum mechanics” [5, 6].

Applications of quasi-hermitian theory form also an integral part of the current thesis. In

order to make it self-contained, the thesis also compactly reviews the fundamentals of the theory

and its current state of art. Since the field is nowadays spanning a wide area of both physics

and mathematics, it is alas not possible to cover it as a whole in a single work (hence “selected

aspects” in the title). The aspects chosen for review are discussed in the first two chapters. The

first chapter reviews the foundations of the theory in more detail that it is usually done, while

the second chapter deals with the concept of solvability and its discrete as well as differential

realizations. An interested reader looking for a more wide-ranging review manuscript should

consult a great recent collection [7].

The final two chapters, on the other hand, are devoted to various results of the present

author from the period of last two years. These can be found in five published works so far.

While [8, 9, 10] stem from a fruitful collaboration with M. Znojil, the papers [11, 12] are a result

of the author’s own research in finite-dimensional quasi-hermitian theory. Much of the work

presented here owns a lot to the latest generation of mathematical computer software. For all

routines involving manipulation with matrices (which is a central problem in the third chapter),

MAPLE’s symbolic manipulation packages have proven especially fruitful. For plots of operator

pseudospectra, a fast and stable plugin for the Matlab suite is available online under the name

EigTool [13].



Chapter 1

Non-hermitian operators as quantum

observables

1.1 Non-relativistic quantum mechanics

Quasi-hermitian theory was, in its original formulation, first applied to non-relativistic quantum

mechanics (although its applications are currently far more wide-ranging). Being commonly

tied together with the Hilbert space formulation, we have decided to include also comparison

with the phase space and path integral formulations, which have been so far seldom discussed

in dedicated literature.

1.1.1 Hilbert space formulation

When considering observables in quantum theories, the usual requirement of hermicity is

supported by two well-founded (and closely related) arguments. First, the mean values cor-

responding to actual measurement outcomes are required to be real quantities (equivalently,

the observables under consideration need to have real spectrum). Second, the time evolution

of the system is required to be unitary, a condition corresponding to the local conservation

of probability. The unitarity of time evolution is strictly equivalent to the hermicity of its

generator (the Hamiltonian), which is clearly established by Stone’s theorem ([14], thm. 5.9.2)

However, we can object that there exist many non-hermitian operators with real spectrum,

which can in principle correspond to quantum measurements. The role of such operators is

precisely the source of possible misunderstandings, which quasi-hermitian theory aims to exploit.

And indeed, as demonstrated by the success of the theory, using non-hermitian operators with

real spectra can lead to intriguing results.

Operators aiming to describe quantum observables must definitely obey one additional

condition, the requirement of diagonalizability. Without this condition, the operator necessarily

lacks a certain number of eigenvectors, which would lead into problems in its probabilistic

interpretation (as the system cannot degenerate to such eigenstate by any measurement pro-

cess). A simpler and (under certain assumptions) equivalent condition to diagonalizability is

hermitizability, the existence of an operator Ω satisfying



h = ΩHΩ−1 = (ΩHΩ−1)† = h† (1.1)

While this condition is simple in theory, its verification could be often laborious or even

impossible, as the operator Ω is in most cases intractable by constructive methods. An

equivalent and even simpler condition can be constructed by manipulating the expression above.

By denoting Θ = Ω†Ω, we might express eq. 1.1 as

H†Θ = ΘH (1.2)

As long as we find a positive Θ satisfying eq. 1.2 for a given non-hermitian H, we can safely

promote such operator to a representation of quantum observable. Operators satisfying this

condition are usually called quasi-hermitian (although other conventions exist, see e.g. [15]).

From the conceptual viewpoint, Θ actually redefines the very notion of the Hilbert space inner

product (φ, ψ) as

(φ, ψ)Θ = (φ,Θψ) (1.3)

in a way making the considered Hamiltonian hermitian. From the strictly mathematical point

of view, the operator Θ is required to be bounded and non-singular in order to avoid possible

pathologies. However, this condition is often relaxed in the literature, as many physically

relevant models satisfy eq. 1.2 with Θ unbounded or singular [4, 16]. Attempts to develop

rigorous mathematical formalism for such generalized quasi-hermitian operators also exist, and

are actively discussed [17, 18, 19].

To summarize our considerations, any given quasi-hermitian operator may be always rendered

hermitian either by modifying the inner product through Θ, or the Hilbert space structure (the

wavefunctions) through Ω. In the language of [20], we might describe quasi-hermitian theory by

a triplet of Hilbert spaces, shown in fig. I.

H(P ) : {Ωψ, (x, y)}

H(F ) : {ψ, (x, y)}

H(S) : {ψ, (x,Θy)}

Figure I: Three Hilbert spaces of quasi-hermitian theory. The space H(F ) is easy to describe but

unphysical, while the physical spaces H(S) and H(T ) can be obtained by modifying eighter the

wavefunctions or the inner product.

The spaces H(S) and H(T ) are the two (physical) Hilbert spaces obtained by modifying the

wavefunctions by Ω, or the inner product by Θ. However, the actual space used to describe a

quasi-hermitian operator is the (unphysical) space H(F ), which makes the operator appear non-

hermitian. The motives for describing a given operator in H(F ) might be guided by mathematical

and computational simplicity, and such operators may also arise naturally in applications.
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1.1.2 Phase space formulation

Quantum mechanics formulated in the phase space [21] emerged first (independently) in the

works of Weyl [22] and Wigner [23] in the 1930s. Their work was completed some fifteen years

later again independently by Groenewold [24] and Moyal [25], who have realized that the Weyl

and Wigner mappings are actually inverse to each other, and who introduced the crucial notion

of the star product.

We use the lowercase letters f(x, p) to denote phase-space functions and uppercase letters

F for Hilbert-space operators. The mappings of Weyl and Wigner between a 2n-dimensional

phase space, and a (unique up to isomorphism) infinite-dimensional Hilbert space bearing a

unitary representation of the Heisenberg algebra are

Weyl: f(x, p) =
1

2π~

∫
Rn

dy e−2ip·y/~〈x+ y|F |x− y〉

Wigner: 〈x|F |y〉 =
1

2π~

∫
Rn

dp eip·(x−y)/~f

(
x+ y

2
, p

) (1.4)

The phase-space analogue of the density matrix is played by its Wigner transform, also called

Wigner quasi-probability distribution ρ(x, p, t). If we denote the Weyl-Wigner isomorphism

as f(x, p)↔ F , we see already from the definition that x↔ X and p↔ P . Next, we aim to

derive a condition of hermicity in the phase space. Since the operators U(x, t) = eitP eisX form

a complete set in the Hilbert space, we may expand any operator as

H =

∫
ds dt a(t, s)eitP eisX (1.5)

We expand the adjoint operator H† in the same fashion and denote its corresponding function

as a†(t, s). Using the canonical commutation relations for the integrand and comparing it to

the result of taking the adjoint directly yields

H† =

∫
ds dt a†(t, s)eitXeisP =

=

∫
ds dt a†(t, s)eitseitP eisX =

∫
ds dt a∗(t, s)e−itP e−isX

(1.6)

showing that a†(t, s) = a∗(−t. − s)e−its. Finally, by expanding (in a completely analogous

fashion) the phase space functions instead of operators and requiring that h = h†, we reveal the

phase space hermicity condition to be

h(x, p) = h†(x, p) =

∫
ds dt a†(t, s)eitpeisx =

=

∫
ds dt a∗(−t,−s)e−itseitpeisx = ei∂x∂ph∗(x, p)

(1.7)

In order to make the quantum interpretation complete, it remains to define a phase space

analogue of operator multiplication. It is obvious, that such an operation must be non-

commutative, and therefore may not be played by pointwise function multiplication. Additionally,
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such operation should respect the Wigner-Weyl isomorphism, which is formalized in the notion

of a ?-product, any mapping ? : Rn × Rn −→ Rn satisfying

FG↔ f(x, p) ? g(x, p) (1.8)

whenever F ↔ f(x, p) and G↔ g(x, p). A concrete (although not unique) realization of the

?-product is commonly implemented by the notion of Moyal product (where we make ~ appear

explicitly, since it shall serve as an expansion parameter)

(f ? g)(x, p) = f(x, p) exp

(
i~
2

(
←−
∂x
−→
∂p −

←−
∂p
−→
∂x)

)
g(x, p) =

=
∞∑
n=0

1

n!

(
i~
2

)n n∑
k=0

(−1)k
(
n

k

)
∂nf(x, p)

∂xk∂pn−k
∂ng(x, p)

∂pk∂xn−k

(1.9)

It can be readily seen, that f ? g = fg +O(~), and the Moyal product has a correct classical

limit ~→ 0. The analogue of the commutator (the antisymmetrization of the Moyal product)

is called Moyal bracket {{f, g}} = 1
i~(f ? g − g ? f). This bracket may be also expanded in the

powers of ~, yielding

{{f, g}} =
∞∑
n=0

n∑
k=0

(−i~)n(−1)k

2nn!

(
n

k

)
∂nf(x, p)

∂xk∂pn−k
∂ng(x, p)

∂pk∂xn−k
= {f, g}+O(~2) (1.10)

with {f, g} being the classical Poisson bracket. The Moyal bracket, together with the Wigner

quasi-probability distribution ρ(x, p, t), may be used to define the time evolution equation,

analogous to the von Neumann equation in Hilbert space

∂ρ(x, p, t)

∂t
= −{{ρ(x, p, t), h(x, p, t)}} (1.11)

where h(x, p, t) denotes the phase-space Hamiltonian, which is commonly required to be

hermitian in the sense of eq. 1.7. With this equation at hand, we have expressed all postulates

of quantum theory in the phase space, making the analogy complete.

Quasi-hermicity in the phase space

Using the phase space formulation may in general prove very effective for manipulation with

certain operators, and quasi-hermitian theory is no exception [26]. The primary reason is, that

eq. 1.2 becomes a partial differential equation instead of an operator identity (which allows the

application of a whole new class of theorems and numerical methods)

h∗(x, p, t) ? θ(x, p) = θ(x, p) ? h(x, p, t) (1.12)

where we are searching for a phase-space positive function θ(x, p), given the knowledge of a

Hamiltonian function h(x, p, t). We illustrate this framework on perturbative construction

of a metric for the imaginary cubic oscillator [27]. This model, despite being in the center
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of attention for almost twenty years, is still subject to active research (as demonstrated, for

example, by the recent no-go theorem establishing the necessarily unbounded or singular nature

of its metrics [28]). Its Hilbert-space Hamiltonian

(Hψ)(x) = −ψ′′(x) + igx3ψ(x) (1.13)

cannot be solved exactly, and perturbative methods have to be used for computing both its

spectrum and its metric. A crucial feature of phase space quasi-hermitian theory is, that the

resulting master differential equation has a finite order, whenever h(x, p) depends polynomially

on x and p. This is precisely our case, since transforming eq. 1.13 into the phase space results

into an equation

2ig θ(x, p)− 3gx2 θp(x, p)− 3igx θpp(x, p) +

+ g θppp(x, p)− 2ip θx(x, p) + θxx(x, p) = 0
(1.14)

Solving this equation perturbatively is much easier compared to its operator equivalent. Still,

the general solution is quite complicated even to first order of precision. We make use of the

results of [27], and choose a particularly physically appealing solution, which is (up to first

order in g)

θ(x, p) = 1 + g

(
3ix

4p4
− 3x2

4p3
− ix3

2p2
+
x4

4p

)
(1.15)

The fact, that this expression indeed solves eq. 1.14, is then verified by simple insertion.

The phase space positivity of such a function is equivalent to hermicity of its logarithm

ln θ∗(x, p) = e−i∂x∂p ln θ(x, p). This may be again verified directly, by expanding to the first

order with the result

ln θ(x, p) = g

(
3ix

4p4
− 3x2

4p3
− ix3

2p2
+
x4

4p

)
(1.16)

Indeed, the constructed solution θ(x, p) is positive and thus a genuine metric. In general,

constructing positive of solutions of eq. 1.12 is a highly nontrivial problem, and it is always

nice to have even a single such solution at hand. In such case, the remaining solutions can be

treated as small perturbations while preserving the positivity condition.

1.1.3 Path integral formulation

The final one in the triumvirate of basic quantum-theoretical frameworks is obviously the path

integral formulation. While the Hilbert space and phase space formulations are closely related

through the correspondence of Wigner and Weyl, the path integral approaches quantum theory

from a fundamentally different perspective, making analogies with the former often subtle

and well disguised. Instead of the Hamiltonian, the fundamental object in the path-integral

formalism is the n-point correlation function (also called the correlator) defined as

11



Gn(t1, . . . , tn) = 〈Ω|T {x(t1), . . . , x(tn)} |Ω〉 =

=

∫
Dx x1 . . . xn e

iS[x]∫
Dx eiS[x]

(1.17)

where the integral has to be understood as an appropriatelly regularized sum over paths from

−∞ to +∞ (for a more mathematically appealing definition, we refer to any textbook on the

subject [29]). The correlators may be obtained as expansion coefficients of a so-called generating

functional

Z[J ] =

∫
Dx eiS[x]+i

∫
dt J(t)x(t) (1.18)

with respect to the auxiliary (Schwinger) source term J(x) around zero. Note that since we are

dealing with functionals (functions over infinite-dimensional spaces), the usual partial derivatives

have to be replaced by more general functional derivatives, which can be defined on any Banach

space. The correlators may be then expressed as

Gn(t1, . . . , tn) =
(−i~)n

Z[0]

δnZ[J ]

δJ [x(t1)] . . . δJ [x(tn)]

∣∣∣∣
J=0

(1.19)

The equations of motion for the correlators may be derived easily from the requirement of

invariance, which the generating functional has to satisfy with respect to transformations

x → x + ε. Since the measure Dφ is invariant per se, the condition of invariance up to first

order in ε may be written as∫
Dx eiS[x]+

∫
Jx

(
i
δS

δx(t)
+ iJ(t)

)
=

〈
i
δS

δx(t)
+ iJ(t)

〉
J

= 0 (1.20)

This general equation of motion is commonly known under the name Schwinger-Dyson equation.

It’s in fact an infinite set of coupled equations for correlators of increasing order. These equations

may be again obtained by Taylor expanding eq. 1.20 with respect to J(t) around zero. For

example, the second coefficient is

0 =
δ

δJ(t)

∫
Dx eiS[x]+i

∫
Jx
(
i δS
δx(t0)

+ J(t0)
)

∫
Dx eiS[x]

∣∣∣∣∣
J=0

=

=

∫
Dx eiS[x]

(
ix(t) δS

δx(t0)
+ δ(t− t0)

)
∫
Dx eiS[x]

=

= i

〈
Ω

∣∣∣∣∣T
{
x(t)

δS

δx(t0)

} ∣∣∣∣∣Ω
〉

+ δ(t− t0)

(1.21)

Recalling that δS/δx(t) is equivalent to the operator L = d
dt

∂
∂ẋ
− ∂

∂x
acting on x(t), this result

demonstrates, that the two-point correlator is actually the (causal) Green’s function of the

12



Lagrange operator. Higher coefficients may be computed analogically using higher functional

derivatives, resulting in

0 = i

〈
Ω

∣∣∣∣∣T
{

δS

δx(t)
x(t1) . . . x(tn)

} ∣∣∣∣∣Ω
〉

+

+
n∑
j=1

〈Ω|T {x(t1) . . . x(t− tj) . . . x(tn)} |Ω〉
(1.22)

Path integral and quasi-hermicity

When trying to formulate quasi-hermitian theory in the path integral formalism, the main issue

lies in elucidating the role of the metric operator, which may be not a priori clear from the

outset. We follow [30] and [31, 32], and write the generating functional using the Hamiltonian

(instead of the Lagrangian) as

Z[J ] =

∫
Dx exp

[
−i
∫

(H − Jx) dt

]
=

= tr

[
exp

{
−i
∫

(H − Jx) dt

}] (1.23)

In the first expression in terms of path integral, H and x are functions, whereas in the second

(canonical) term, they are Hilbert space operators. We work with the latter expression in order

to demonstrate the presence of the metric operator. Consider H to be quasi-hermitian with

respect to a certain Θ. The definition of generating functional remains unchanged. However,

the hermitian operator x does no longer play the role of position and must be modified to a

quasi-hermitian operator X, so that eq. 1.23 becomes

Z[J ] = tr

[
exp

{
−i
∫

(H − JX)dt

}]
(1.24)

This is the correct generating functional of the theory, sufficient to deduce all physical quantities.

Since X is quasi-hermitian with respect to the same metric Θ as the Hamiltonian, we may use

the decomposition Θ = Ω†Ω and the cyclic property of the trace to express the functional in

terms of canonical position x = Ω−1XΩ and hermitian isospectral partner of the Hamiltonian

h = Ω−1HΩ as

Z[J ] = tr

[
exp

{
−i
∫

(h− Jx)dt

}]
(1.25)

Any of the two above functionals may be computed also from the path integral, using the

classical analogues of the position and Hamiltonian. Alas, the explicit appearance of either Θ or

Ω is the functionals indicate, that the picture has not been simplified in any way by using path

integral. Indeed, we still bear the burden of having to find the metric operator or a isospectral

hermitian Hamiltonian before applying this machinery. However, as long as we are able to

compute these quantities, we might readily express the correlators as

13



Gn(t1, . . . , tn) =
(−i~)n

Z[0]

δnZ[J ]

δJ [x(t1)] . . . δJ [x(tn)]

∣∣∣∣
J=0

=

= 〈Ω|ΘT {x(t1), . . . , x(tn)} |Ω〉
(1.26)

As for the evolution equations, using the same invariance condition as in the hermitian scenario

(and subsequently performing the functional derivatives) leads to the Schwinger-Dyson equations

in a completely same form as in eq. 1.22.

1.2 Relativistic quantum mechanics

Relativistic single-particle quantum mechanics is a theory initially thought to provide synthesis

between quantum mechanics and special relativity. However, it was soon found to be plagued

with problems and controversies, and abandoned in favor of quantum field theory. Nevertheless,

the subject remains relevant even today, mainly because of the gradually increasing interest in

theories of quantum gravity, where the field theory approach does not work due to renormalization

problems.

Relativistic quantum mechanics is also the subject of one of the most fundamental applica-

tions of quasi-hermitian theory. Indeed, the framework helped to resolve a decades-old problem

of assigning probabilistic interpretation to certain relativistic quantum equations of motion.

We shall discuss details of this procedure for the two most frequently encountered cases: the

Klein-Gordon and Proca equation.

1.2.1 The Klein-Gordon equation

The Klein-Gordon equation [33, 34] describes time evolution of relativistic scalars (particles

with zero spin). Interestingly, it was written down by Schrödinger even before his more famous

eponymous equation. However, it was discarded from quantum-mechanical considerations due

to a problem with the non-existence of a positive probability density. We shall consider the

Klein-Gordon equation in the absence of external potential(
� +m2

)
ψ(x, t) = 0 (1.27)

Being second-order in time, this equation may look substantially different from the non-

relativistic Schödinger equation. It is however a classical result [35], that it may be transformed

into a Schrödinger-like canonical form on a space L2(M)⊕ L2(M) (provided that ψ(x, t) acts

on L2(M)). The transformation can acquire different (but unitarily equivalent) forms, see for

example [36] and [37]. We use the parametrization of the former paper, for which we denote

D = −∆ +m2. The Klein-Gordon equation may be then expressed as iΨ̇(x, t) = HΨ(x, t) with

Ψ(x, t) =

[
iψ̇(x, t)

ψ(x, t)

]
H =

[
0 D

I 0

]
(1.28)

The only apparent drawback of this transformation is, that the resulting Hamiltonian is

manifestly non-hermitian in the preselected space L2⊕L2 (which is a general feature, independent
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on the chosen parametrization). Since the free Klein-Gordon equation is known to have a real

spectrum σ = (−∞,+∞), a remedy to this problem may be sought using quasi-hermitian

theory.

We aim to construct a metric operator for eq. 1.28 in order to establish its quasi-hermicity.

There are several ways to do that, the most direct one being to sum explicitly the series

(Θψ)(x) =
∑
αkφk(x)(φk, ψ), where φk(x) are the eigenvectors of the operator H† and αk > 0

are arbitrary. Restricting attention to operators respecting the block structure of eq. 1.28, we

are left with

Θ = α+

[
1 −D1/2

−D1/2 D

]
+ α−

[
1 D1/2

D1/2 D

]
= (α+ + α−)

[
1 α−−α+

α++α−
D1/2

α−−α+

α++α−
D1/2 D

]
(1.29)

with D1/2 defined as the positive square root of the (positive) operator D. Finally, we can

denote α = α−−α+

α++α−
∈ (−1, 1) and omit multiplication of the metric by a constant factor as

irrelevant, resulting in a single-parametric family of physical metrics. A comforting result of

[38] furthermore establishes unitary equivalence of metrics with different α. This leaves us

essentially with a unique physical inner product, realized e.g. by the natural choice α = 0 as

(φ, ψ)Θ = (Φ,ΘΨ) = (φ,Dψ)− (φ̇, ψ̇) (1.30)

Since D is unbounded on L2(R), the same holds for Θ for any α. This must be taken as a

warning, since eq. 1.28 has to be understood as quasi-hermitian in a generalized sense, and

possible pathologies may appear.

Probability current

The construction of the physical inner product for the Klein-Gordon equation may be seen

as a first step to its quantum interpretation. The second complementary step would require

constructing a positive and conserved probability density ρ(x, t). The law of conservation

amounts to

∂tρ(x, t) + (∇j)(x, t) = 0 (1.31)

for some vector j(x, t). In another language, ρ(x, t) must be a null component of a conserved

four-vector. Consider, for example, the Schrödinger equation, which possesses a conserved

current jµ = (ρ, j) with the components

ρ = ψψ∗ j = i(ψ∗∇ψ − ψ∇ψ∗) (1.32)

Recalling that the usual inner product on the space of solutions of the Schrödinger equation

is (φ, ψ) =
∫
φ∗ψ, it follows that the null probability density determines the inner product (or

equivalently, the norm) through the relation (φ, φ) =
∫
ρ(x, t)dx. Moreover, ρ = ψψ∗ implies

the existence of an inner product, which remains conserved in time
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d

dt
(φ(t), ψ(t)) =

d

dt

∫
R3

φ(x, t)ψ∗(x, t) dx =

=

∫
R3

∂φ(x, t)

∂t
ψ(x, t) +

∫
R3
φ(x, t)

∂ψ(x, t)

∂t
=

=

∫
R3

∇φ(x, t)ψ(x, t) +

∫
R3
φ(x, t)∇ψ(x, t) =

∫
R3

∇(φψ)(x, t) = 0

(1.33)

In general, any probability density gives rise to a conserved inner product through analogous

procedure. One such inner product for the Klein-Gordon equation was derived just in the

last section. Here we shortly examine the possibility to work backwards and get a conserved

probability density from a conserved inner product [37, 39]. The quantity usually known as the

Klein-Gordon inner product

jµ = i(ψ∗∂µψ − ψ∂µψ∗) (1.34)

fails to have a positive null component (despite being conserved in time), and thus cannot be

used for our present purposes. However, inspired by the non-relativistic scenario, we might

define the null component of the desired current to be the integrand of eq. 1.30

j0KG = ψ∗Dψ − ψ̇∗ψ̇ (1.35)

The remaining components of the four-current may then be found by performing an infinitesimal

Lorentz boost on x and imposing the requirement of covariance on jµ (details of this procedure

may be found in [37], sec.2). The result is expressed compactly as jµ = ψ∗∂µDψ̇− ∂µψ̇∗ψ, with

the covariance as well as conservation of this final quantity to be verified directly from the

definition.

1.2.2 The Proca equation

Equations governing the motion of relativistic particles can be organized into a well-known

hierarchy according to the particle’s spin (with first member of this hierarchy being the Klein-

Gordon equation discussed above). The transformation into canonical form was successfully

defined for several of these equations [40, 41], making them suitable for analysis with tools

of quasi-hermitian theory. We start from the Dirac equation for particles of spin 1/2. This

equation can not only be written in a Schrödinger-like form, but its most common expression

(iγµ∂µ −m)ψ = 0 is actually of this type, using a 4× 4 matrix Hamiltonian

H =


m ∂z ∂x + i∂y

m ∂x − i∂y −∂z
∂z ∂x + i∂y −m

∂x − i∂y −∂z −m

 (1.36)

Note that this is just one particular (Dirac) representation of the gamma matrices appearing in

the equation, other (equivalent) four-dimensional representations (Majorana, Newton-Wigner

and others) may be also useful. Since the Dirac Hamiltonian is already hermitian per se, there
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is no need to apply the machinery of quasi-hermitian theory. This is further demonstrated in

the existence of a conserved four-current with a positive null component

jµ = ψγµψ (1.37)

where we define the Dirac adjoint ψ = ψ†γ0. Indeed, the null component of this four vector

is j0 = ψ†γ0γ0ψ = ψ†ψ, a manifestly positive quantity. Note that despite these promising

features, there are further conceptual problems with single-particle Dirac equation, manifested

for example by the Klein paradox [42].

Making one step up the hierarchy, one arrives at the Proca equation, which describes

relativistic particles of spin 1, also called vector bosons [43]. It is commonly expressed using

the four-potential Aµ as

∂µ(∂µAν − ∂νAµ) +m2Aν = 0 (1.38)

Every component of Aµ separately obeys the Klein-Gordon equation, with the components being

tied together by an additional constraint ∂µA
µ = 0. Once again (and somewhat surprisingly),

we may transform the Proca equation into the canonical form using a 6× 6 matrix Hamiltonian.

As long as we define the formal analogue of electric intensity ~E = ∂t ~A− i∇A0, we may write

H =



∂2
x −m2 ∂x∂y ∂x∂z
∂y∂x ∂2

y −m2 ∂y∂z
∂z∂x ∂z∂y ∂2

z −m2

−∂2
x − ω2 −∂x∂y −∂x∂z
−∂y∂x −∂2

y − ω2 −∂y∂z
−∂z∂x −∂z∂y −∂2

z − ω2


Ψ =

(
m~A

i ~E

)
(1.39)

with ω2 = ∆ +m2. This Hamiltonian may be in principle manipulated to obtain the general

family of admissible inner products. A first step in this direction was made in [44] with a

construction of a particular (positive) metric



m2 − ∂2
y − ∂2

z ∂x∂y ∂x∂z αmω

∂x∂y m2 − ∂2
x − ∂2

z ∂y∂z αmω

∂x∂z ∂y∂z m2 − ∂2
x − ∂2

y αmω

αmω ω2 + ∂2
y + ∂2

z −∂x∂y −∂x∂z
αmω −∂x∂y ω2 + ∂2

x + ∂2
z −∂y∂z

αmω −∂x∂z −∂y∂z ω2 + ∂2
x + ∂2

y


(1.40)

In addition, the importance of this metric was supported by establishing its Lorentz invariance,

expressed by the condition M †Θ = ΘM for an appropriate representation of Poincare algebra

generators M . A more complete account regarding the construction of metrics for eq. 1.39 can

be found in [45].
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Quantization schemes

The quantization of the Proca equation is somewhat more involved than both the Dirac and the

Klein-Gordon equations, since eq. 1.38 is a constrained system (only three components of Aµ are

actual dynamical variables). A common approach in such case is to remove the auxiliary degrees

of freedom before the quantization process itself. Writing the Lagrangian density corresponding

to the Proca equation as

L = m2A∗µA
µ − 1

2

(
∂µA

∗
ν − ∂νA∗µ

)
(∂µAν − ∂νAµ) (1.41)

one readily sees that the null component of the canonical momentum satisfies π0 = ∂L/∂A0,t = 0.

Consequently, we might eliminate the null field components using A0 = (∂mπ
∗
m)/m2. After a

straightforward calculation, the Hamiltonian density of the system is then expressed as

H = π∗mπm +
1

m2
π∗m,mπn,n +m2A∗mAm + A∗m,nAn,m − A∗m,mA∗n,n (1.42)

showing that it is completely independent on A0. Having successfully removed the nonphysical

degrees of freedom, the quantization of this Hamiltonian may proceed in the usual canonical

formalism. This is precisely the approach used to derive eq. 1.39, explaining also the six-

dimensional nature of the result (instead of expected eight dimensions).

Alternatively, the constraint may be quantized together with the dynamics in the formalism

of Dirac quantization [46]. This is the approach taken in [47], where three seemingly different

but equivalent recipes are shown for quantizing the Proca system. In such case, the resulting

canonical Hamiltonian has of course dimension eight.

18



Chapter 2

Solvability and computational aspects

2.1 Solvability and quasi-hermitian theory

We have seen that, despite providing a mere new mathematical formalism comparable e.g.

to the Heisenberg or interaction pictures, quasi-hermitian theory leads to unexpected results

concerning interpretation of relativistic wave equations. The usual application of the theory,

however, is more modest: since nontrivial metrics allow in principle for a more general class

of solvable operators, the aim is to search for such models and compute their spectra. Pars

pro toto, we have included this review chapter devoted entirely to the concept of solvability in

quantum mechanics as a whole [48].

Be warned, however, that the very notion of a solvable quantum operator is not unambiguous

throughout the literature. It is often required, that the Schrödinger equation satisfies certain

regularity conditions. Most of the commonly known potentials (among them the harmonic

oscillator, hydrogen atom, Morse and Pöschl-Teller potentials) are solvable in this sense, with

the corresponding Schrödinger equation belonging to the hypergeometric family. Interestingly,

hypergeometric solvable potentials have been, after a long-lasting effort, described and classified

completely [49, 50]. Classification of potentials corresponding to a more general Heun class of

differential equations is currently in progress [51, 52].

2.1.1 Toeplitz matrices

Toeplitz matrices are probably the most general class of discrete models, which allows for

general explicit formulas describing the spectrum [53]. They may be generally divided into four

kinds. A finite Toeplitz matrix is any n× n matrix (aij) having constant diagonal entries, that

is ai,j = ai−j . A Toeplitz matrix with entries wrapping around as ak−n = ak is called a circulant

matrix. Infinite-dimensional analogues of these matrices are defined as constant-diagonal

matrices on `2(N) (infinite Toeplitz matrices), respectively `2(Z) (Laurent matrices). Note that

the latter case already encompasses the circulant structure without additional requirements.

For infinite matrices, it is generally not clear whether they define a closed operator on `2,

and what is such an operator’s domain. However, as long as we restrict attention to bounded

operators, a complete and simple characterization exists. Let’s pick any orthonormal basis

(ψn) of the underlying Hilbert space. An infinite Toeplitz (Laurent) matrix A then defines a



bounded operator on `2(N) or `2(Z) through the relation aij = (ψi, Aψj), if and only if there is

a function a ∈ L∞(T), such that

an =
1

2π

∫ 2π

0

a(eiθ)e−inθdθ (2.1)

where T denotes the unit circle. Moreover, the norm of such an operator is ‖A‖ = ‖a‖∞ (see [53],

thm. 1.1 and 1.9 for a proof). Since the correspondence between bounded Toeplitz operators

and functions a ∈ L∞(T) is one-to-one, the most common way of encoding information about

the whole Toeplitz matrix is through its associated function

a(z) =
∞∑

k=−∞

akz
k (2.2)

Every circulant and every Laurent matrix A is normal, since it may be written as a convolution

operator Av = a ? v for some vector a. Convolution operators are related to multiplication

operators by Fourier transform, and all bounded multiplication operators are normal ([54], ex.

3.8). This is however not true for general Toeplitz matrices [55].

The general correspondence between A and a(z) can be exploited to characterize the

spectrum of A. In the following, we let T once again denote the unit circle, and Tn the set of

n-th roots of unity. The most general theorem of this section allows to describe the spectrum

of Laurent operators: it coincides with the essential range of the corresponding function.

σ(A) = R(a) := {λ ∈ C | µ(t ∈ R, |a(t)− λ| < ε) > 0} (2.3)

with µ(·) being the usual Lebesgue measure ([53], thm. 1.2). Note that the function a(z) does

not have to be differentiable or even continuous. In order to formulate the remaining theorems,

we shall have to be more modest, and restrict attention to continuous symbols a ∈ C(T). First,

observe that for this kind of symbols, the formula above becomes σ(A) = a(T). Additionally,

we can describe the spectra of

• finite circulant matrices as σ(H(a)) = a(Tn)

• infinite Toeplitz matrices as σ(H(a)) = a(T) together with λ ∈ C, such that I(λ, a) 6= 0.

with I(a, λ) being the winding number of a around λ (see [53], thm. 1.17). In contrast, no

simple characterization of eigenvalues exists for finite Toeplitz matrices. The closest one can

get to the above theorems is a characterization of resolvent growth of such matrices with their

growing dimension. This is most nicely formalized using the concept of pseudospectrum

σε(H) =
{
λ ∈ C | ‖(H − λ)−1‖ > ε−1

}
(2.4)

which shall be discussed later in detail. To illustrate the behavior of finite Toeplitz matrices,

fig. II shows a plot of the spectrum and pseudospectrum of a finite Toeplitz and finite circulant

matrix of dimension 100 associated with the same function a(z).

Despite the eigenvalues of the two matrices (black dots) being substantially different, the

pseudospectral lines trace out exactly the same pattern in the complex plane. This is indeed a
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(a) finite Toeplitz matrix

Re λ

Im λ

-15

15

-15 15

(b) finite circulant matrix

Re λ

Im λ

-15

15

-15 15

Figure II: Spectra and pseudospectra corresponding to a(z) = iz−3 − 5z−2 + 6z−1 − 3z2 − 8iz3

general property of finite Toeplitz matrices, which may be formalized into a theorem ([56], thm.

7.2). It states, that the resolvent norm ‖(An − λ)−1‖ of a sequence of finite Toeplitz matrices

remains uniformly bounded whenever I(a, λ) = 0, but grows exponentially with n as long as

I(a, λ) 6= 0 (at least for n sufficiently large), that is

‖(An − λ)−1‖ ≥ ecn for some c > 0 (2.5)

In another language, the theorem provides a convergence relation between pseudospectra of a

sequence of finite Toeplitz matrices An and corresponding infinite Toeplitz matrix A. In the

appropriately defined distance of sets (which is discussed later in this chapter), it shows that

σε(An)→ σε(A) as n→∞. Note, that (as seen already from fig. II) such convergence theorem

apparently does not apply for the spectrum.

2.1.2 Constant-coefficient differential operators

The theory of differential operators with constant coefficients does, somewhat surprisingly,

parallel the theory of Toeplitz matrices very closely. Consequently, the spectrum of such

operators can be described in a very compact way. This follows from a more general possibility

of constructing isomorphism between (bounded) Toeplitz matrices and (unbounded) constant-

coefficient differential operators, as well as their appropriate subclasses. The general differential

operator with constant coefficients realizes itself as a formal expression

(Aψ)(x) =
d∑
j=0

ajψ
(j)(x) (2.6)

where d is usually called the degree of the operator. Its domain must be defined appropriately,

in order for the resulting operator to be closed. In our discussion, it is chosen as a subdomain

of ACd−1(R), functions with absolutely continuous (d − 1)-th derivative (in the special case
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d = ∞, this means the functions have to be analytic). We again define a symbol uniquely

determining each constant-coefficient differential operator

a(k) =
d∑
j=0

aj(−ik)j (2.7)

which shall be used to elegantly describe its spectrum. We discuss four possible domains for

eq. 2.6, which shall be revealed to correspond closely to the four classes of Toeplitz matrices.

These domains and their discrete counterparts are summarized in tab. A (where the statement

“β homogeneous boundary condition at x0” means ψ(x0) = ψ′(x0) = · · · = ψ(β−1)(x0) = 0).

domain of constant-coefficient differential operator Toeplitz matrix

ACd(R) infinite Laurent

ACd[0, κ] with d periodic conditions finite circulant

ACd(R+) with β ≤ d homogenous conditions at x = 0 infinite Toeplitz

ACd[0, κ] with β hom. cond. at x = 0 and γ hom. cond. at x = κ finite Toeplitz

Table A: Analogies between constant-coefficient differential operators and Toeplitz matrices.

Compared to theorems formulated in the preceding section, there is an additional degree of

freedom for two of these scenarios, manifested in the presence of parameters β and γ. We shall

see that strict analogy applies as long as we choose β = d and γ = 0. As for the first three

cases, we can again formulate theorems characterizing the spectrum

• on ACd(R), we have σ(A) = R(a)

• on ACd[0, κ] with d periodic conditions, we have σ(A) = a(2πZ/κ)

• on ACd(R+) with β homogenous conditions at x = 0, we have σ(H) = a(R) together with

all λ ∈ C satisfying I(a, λ) 6= d− β

where the statement on ACd(R) holds for any a ∈ L∞(T), whereas the remaining ones require

a ∈ C(T). The role of finite Toeplitz matrices is played by operators on a finite interval with

homogeneous conditions at both ends. Again, we might employ more general conditions, and

assume that there are β conditions at x = 0 and γ conditions at x = κ. Then the theorem

concerting growth of the resolvent function states, that

‖(Aκ − λ)−1‖ ≥ ecκ for some c > 0 (2.8)

whenever I(a, λ) < d − β or I(a, λ) > γ (see [56], thm. 10.2). Note that for γ = d − β, this

condition becomes I(a, λ) 6= d− β. For these more restricted boundary condition, the above

statement might be again reformulated in terms of pseudospectral convergence, σε(Aκ)→ σε(A)

as κ→ 0, where A acts on the half-line with β conditions at zero.
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Convection-diffusion operator

Differential operators (including those with constant coefficients) appear, unlike Toeplitz

matrices, ubiquitously in almost all areas of physics. One such operator serves in fluid mechanics,

semiconductor physics are related areas to to describe the transfer of particles or energy due

to combination of two processes: convection and diffusion [57]. Such operator has to be non-

hermitian by definition (since diffusion is a non-reversible, and therefore non-unitary process),

The simplest reasonable choice is

(Hψ)(x) = −ψ′′(x) + ψ′(x) (2.9)

We consider this operator on two domains: the whole real line, and a finite interval [0, κ] with

β = γ = 1 (corresponding to fixed ends of a string, or impenetrable walls). On the first of those

domains, the spectrum may be readily written down as the range of a(z) = −iz − z2, which is

a parabola in the complex plane

σ(H) =
{
λ ∈ C | (Im λ)2 = Re λ

}
(2.10)

On [0, κ], the spectrum cannot be characterized with the help of above theorems, it can be

however computed by hand using a simple trick. Let’s consider a transformation Ω = exp(x/2),

and observe that the convection-diffusion Hamiltonian is similar to a hermitian operator

(H ′ψ)(x) = (ΩHΩ−1ψ)(x) = −1

4
ψ(x) + ψ′′(x) (2.11)

defined on the same domain. This similarity transformation is bounded and nonsingular for any

κ <∞, making H and H ′ isospectral. The eigenvalue equation for H ′ may be solved exactly,

with the result

σ(H ′) =

{
−1

4
− π2n2

κ2

∣∣∣∣ n ∈ N
}

(2.12)

This reasoning however breaks down for κ =∞. The formal similarity of the two differential

operators no longer guarantees their isospectrality, and indeed, their spectra are substantially

different. While the spectrum of H, as we have seen, forms a parabola in the complex plane,

the spectrum of H ′ is a real half-line (−1/4,∞). Both spectra together with contours of the

resolvent are shown in fig. III.

2.1.3 Solvability and supersymmetry

Supersymmetry, in its original setting, is a theory describing a suggested type of spacetime

symmetry between bosons and fermions [58, 59]. In a theory with unbroken supersymmetry,

any boson would have its supersymmetric fermion partner with the same mass, charge etc,

differing only by its spin. This is naturally not observable in our universe, meaning that an

actual existing supersymmetry would have to be spontaneously broken. Its existence is still a

matter of discussion, both theoretical and phenomenological.

The ideas of supersymmetry may be applied to quantum mechanics, where they closely

relate to the concept of solvability [60, 61], and extend the factorization method proposed
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Figure III: Spectra and resolvent contours of eq. 2.9 (solid and colored lines), together with the

spectrum of eq. 2.11 (dashed lines). While the spectra of the two models may be substantially

different, the resemblance of the pseudospectra is undisputed.

initially by Infeld and Hull [62]. Instead of bosons and fermions, the objects of interest are two

Hamiltonians with potentials V1(x) and V2(x), intertwined in terms of a so-called superpotential

W (x). From the knowledge of this superpotential, we may define the creation and annihilation

operators as

(aψ)(x) = ψ′(x) +W (x)ψ(x)

(a†ψ)(x) = −ψ′(x) +W (x)ψ(x)
(2.13)

The partner Hamiltonians may then be written as H1 = a†a and H2 = aa† (by definition, both

of these operators are positive). In terms of the superpotential, this means that the partner

potentials can be expressed as V1,2(x) = W 2(x)±W ′(x). The corresponding Hamiltonians are

then related in terms of eigenvalues, eigenfunctions, and scattering data. Indeed, assume that

H1ψ = aa†ψ = Enψ. Then

H2(aψ) = aa†aψ = aH1ψ = E(aψ) (2.14)

and we have constructed an eigenstate of H2 from the eigenstate of H1, corresponding to the

same energy. For operators with discrete spectrum, this means that H1 and H2 are isospectral,

unless Aψ = 0. If this happens, H1 has zero ground energy and ψ(x) is the corresponding

(nodeless) ground state. This is a very special case in supersymmetric quantum mechanics, a

so-called unbroken supersymmetry. In this precise scenario, we might explicitly write W (x),

and consequently H2(x), merely from the knowledge from the ground state ψ0(x) of H1 as

W (x) =
ψ′0(x)

ψ0(x)
(2.15)

The Hamiltonian H2 constructed through this procedure is being isospectral to H1, with the

exception of the lowest eigenvalue. This has important theoretical consequences in case the

spectrum of H1 can be evaluated explicitly. In particular, we might readily write down the

whole spectrum of the newly constructed Hamiltonian using merely the knowledge of spectrum

of H1 and its ground state.

Up to now, we have used supersymmetry to construct new potentials from known, possibly

solvable, ones. However, supersymmetric techniques can be also used to construct spectra of
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certain Hamiltonians per se. For this to happen, it suffices that the partner potential differs

from the original one only by an inessential change of parameters. This is formalized in the

condition of shape-invariance

V2(x, a1) = V1(x, a2) +R(a1) (2.16)

Here a2 = f(a1) is supposed to be a certain well-behaved function of a1, and the same applies

for R(a1). To prove this assertion, we use the shape-invariance condition repeatedly to construct

an infinite hierarchy of Hamiltonians Hn. Inserting eq. 2.16 into the p-th and the p + 1-th

Hamiltonians results in

(Hpψ)(x) = −ψ′′(x) + V1(x, ap)ψ(x) +

p−1∑
k=1

R(ak)ψ(x)

(Hp+1ψ)(x) = −ψ′′(x) + V1(x, ap+1)ψ(x) +

p∑
k=1

R(ak)ψ(x)

(2.17)

Since these two Hamiltonians are supersymmetric partners, they necessarily have the same

spectrum except for the zero ground state of Hp. Going back down the hierarchy to p = 0 and

using the isospectrality condition, we arrive to the expression for the n-th eigenvalue of H1

E(1)
n = E

(n)
0 =

n∑
k=1

R(ak) (2.18)

Almost all known analytically solvable potentials are shape invariant in this sense. As an

example, consider the radial Coulomb and harmonic oscillator potentials indexed by their

discrete angular momentum `, which shall naturally take the role of the auxiliary parameter in

eq. 2.16. The shape invariance conditions for both these potentials are then

Vl(r) =
l(l + 1)

r2
+
e

r
V2(r, l, e) = V1(r, l + 1, e) +

[
e4

4(l + 1)2
− e4

4(l + 2)2

]
Vl(r) =

l(l + 1)

r2
+ ω2r2 V2(r, l, ω) = V1(r, l + 1, ω)− (l + 1/2)ω + (l + 5/2)

(2.19)

which, together with eq. 2.18, result in the well-known expressions for their eigenvalues without

need of solving any differential equation.

Finally, we comment shortly about the relation between the supersymmetry used in this

section and actual supersymmetry in particle physics. Although both concepts look substantially

different at first sight, they share the algebraic structure of a superalgebra sl(1, 1). This

superalgebra arises in our context through the following entities defined in terms of the

Hamiltonian and the ladder operators

H =

[
H1 0

0 H2

]
Q =

[
0 0

a 0

]
Q† =

[
0 a†

0 0

]
(2.20)
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Computing their (anti)-commutation relations indeed reveals the structure of sl(1, 1), which is a

Z2 graded algebra admitting decomposition into even and odd elements, such that the algebra

multiplication respects the grading.

[H,Q] = [H†, Q†] = 0 {Q,Q†} = H

{Q,Q} = {Q†, Q†} = 0
(2.21)

Examples

The supersymmetric machinery outlined above may be applied iterativelly, using the newly

constructed Hamiltonian H2 as a new starting point. This way, we arrive in principle at an

infinite hierarchy of Hamiltonians with closely related spectral properties. As an example, let

H1 be a Hamiltonian of the infinite square well on [0, κ] with

V (x) =

{
0 for x ∈ [0, κ]

+∞ otherwise
(2.22)

Its spectrum can be evaluated directly to be En = π2(n + 1)2/κ2. We subtract its ground

state energy E0 = π2/κ2 by redefining H → H − E0 in order to reach the state of unbroken

supersymmetry (otherwise, we shall not be able to express the partner Hamiltonian explicitly).

After evaluating H2, we might repeat this algorithm any number of times, obtaining a hierarchy

of Hamiltonians indexed by a discrete parameter p

Vp+1(x) =
π2p(p+ 1)

κ2
csc2

(πx
κ

)
(2.23)

By construction, the spectrum of these operators may be readily determined without further

computations as E
(p+1)
n = π2

κ2
{n(n+ 2p+ 2) + p2}. The fact, that potentials with p ≥ 1 are

essentially equivalent to each other up to a change of parameters, is a clear demonstration of

their shape invariance. On the other hand, the square well itself is substantially different in

shape from this family, as demonstrated in fig. IV.

0 κ 0 κ

Figure IV: Low lying eigenstates of the square potential well (left) as well as the first member of

eq. 2.23 (right). The first excited state of the square well corresponds to the ground state of the

second potential.

The technique of supersymmetry can be also applied to Hamiltonians with continuous spectra,

and used to relate their scattering matrices. In order to proceed, we define W± = W (x = ±∞).
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Then, in a way outlined in [60], we may relate the reflection and transmission coefficients of the

partner Hamiltonians as

R1(k) =

(
W− + ik

W− − ik

)
R2(k) T1(k) =

(
W+ − ik′
W− − ik

)
T2(k) (2.24)

with k2 = E−W 2
− and k′2 = E−W 2

+. From this relation, we can deduce that |R1(k)|2 = |R2(k)|2
and |T1(k)|2 = |T2(k)|2; the partner potentials have identical reflection and transmission coeffi-

cients. As an example, we shall construct a hierarchy of supersymmetric partners corresponding

to the free particle. Consider a free particle potential, chosen as V (x) = α2/2. Its superpotential

may be readily computed as a solution of the equation W 2(x) − W ′(x) = V (x), which is

W (x) = α tanh(αx). The corresponding hierarchy of p-indexed potentials is

Vp+1(x) =
αp(p+ 1)

cosh2(αx)
− p2 (2.25)

with the p-th potential having precisely p bound states and a band of continuous spectrum.

By construction, this family of potentials is reflectionless, which is often a desired property in

applications, as for example in theoretical realizations of invisibility [63].

2.2 Numerical issues

In contrast to the wealth of available analytic methods, the class of solvable Hamiltonians is

usually too narrow to serve the practical needs of physical experiments. Numerical methods

must be used to examine the majority of phenomenologically relevant operators, and it is

thus crucial to understand the questions of applicability and convergence of such methods.

Consequently, we complement the discussion of analytic methods by its numerical counterpart,

with the choice of methods reflecting our focus on analysis of non-hermitian operators.

2.2.1 Pseudospectrum

One of the most fundamental results in the theory of normal operators is the spectral theorem.

Its essence lies in the fact, that any normal (and thus also any hermitian) operator may

be completely described from the knowledge of its spectrum (including degeneracies). Since

the spectrum is a simple and nicely visualized concept, it often provides a more convenient

description of the system than the elusive entity of a Hilbert space operator.

For non-normal operators, the spectral theorem does not hold, and the spectrum is no longer

sufficient to encode complete information about their behavior. When performing non-normal

analysis, one has to look at other quantities in order to obtain the desired knowledge about the

operators. Since the spectrum consists of poles of the resolvent function, a logical step would

be to take a closer look at the resolvent function itself, and in particular its norm. This is the

essential idea behind the definition of the pseudospectrum

σε(H) =
{
λ ∈ C | ‖(H − λ)−1‖ > ε−1

}
(2.26)
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where we tacitly assume that ‖(H − λ)−1‖ =∞ for λ ∈ σ(H). We shall see shortly, that this

notion is indeed trivial for normal operators, but can be highly nontrivial in general. Instead of

the resolvent norm, the pseudospectrum may be described also in several other ways, three of

which are listed below (see thm. 4.3 in [56] for a proof)

σε(H) = {λ ∈ C | ‖(H − λ)v‖ ≤ ε, ‖v‖ = 1} =

= {λ ∈ C | σmin(H − λ) ≤ ε} =

= {λ ∈ C | λ ∈ σ(H + A), ‖A‖ < ε}
(2.27)

The vector v appearing in the first of these definitions is usually called a pseudoeigenvector.

Its existence for every λ ∈ σε(H) shows, that the pseudospectrum coincides with the set of

pseudoeigenvalues, and has no “continuous” and “residual” parts. The definition in terms of the

lowest singular value σmin is most suitable for doing numerical computations. Alternatively, one

can use the last definition of eq. 2.27 to plot eigenvalues of perturbed Hamiltonians, producing

a similar result. We show the results of both these methods in fig. V.

(a) contour plot of the lowest singular value

Re λ

Im λ

-15

15

-15 15

(b) eigenvalues of 50 random perturbations

Re λ

Im λ

-15

15

-15 15

Figure V: Pseudospectra taken from fig. II computed using two different numerical methods of

eq. 2.27.

The pseudospectrum of a normal operator behaves in a surprisingly trivial way. To see this,

denote the ε-neighborhood of a set M in the usual Euclidean metric as ∆ε(M). Next, recall

that as a simple consequence of the spectral theorem, normal operator are diagonalizable by

unitary transformations, that is H = U †DU . Making use of this fact, we may write

‖(H − λ)−1‖ = ‖(U †DU − λU †U)−1‖ =

= ‖(D − λ)−1‖ = ρ(λ, σ(D))−1 = ρ(λ, σ(H))−1
(2.28)

which shows that σε(H) = ∆ε(σ(H)) for any normal operator: the pseudospectrum is simply the

ε-neighborhood of the spectrum. This has a direct consequence for quasi-hermitian operators.
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Since any such operator H may be written as H = Ω−1hΩ for h hermitian, it follows directly

from the definition, that

σε(H) ⊆ ∆κ(Ω)ε(σ(H)) with κ(Ω) = ‖Ω‖‖Ω−1‖ (2.29)

(see also [56], thm. 3.4). When complemented by the inequality ∆ε(σ(H)) ⊆ σε(H) valid for any

operator whatsoever, this imposes (non-sharp) bounds for ε-pseudospectrum of quasi-hermitian

operators. This has an important consequence; a quasi-hermitian operator admitting a bounded

and non-singular metric has its pseudospectrum confined to bounded region around σ(H).

Looking at a pseudospetral plot with contours escaping to infinity thus provides a strong

indication for the nonexistence of a genuine metric. This behavior is illustrated in fig. VI for

the imaginary cubic and harmonic oscillators.

Re λ

Im λ

-8

8

0 60

Re λ

Im λ

-8

8

0 60

Figure VI: Pseudospectra of the imaginary cubic oscillator (upper image) and the linear har-

monic oscillator (lower image). The unbounded pseudospectra in the first plot have important

consequences, which are discussed below.

As we have seen already for Toeplitz matrices and constant-coefficient differential operators,

the spectrum of a convergent operator sequence may behave quite unpredictably, while the

pseudospectrum converges reasonably to its proper limit. This is indeed a general feature of

the pseudospectrum. In order to formalize it, we must establish the notion of set convergence,

most naturally defined in terms of the Hausdorff distance

ρ(M,N) = max

{
sup
x∈M

inf
y∈N

ρ(x, y), sup
y∈N

inf
x∈M

ρ(x, y)

}
(2.30)

with ρ(x, y) denoting usual Euclidean notion of distance. The notion of operator convergence

may be defined in several ways, the most useful being norm convergence (applicable for bounded

operators) and norm resolvent convergence (for unbounded operators with bounded resolvent).

A natural generalization of both these notions is formalized in convergence under the so-called

gap measure δ(H1, H2), see [64], sec. IV.2.

Using this notion enables us to state the convergence theorem in its most general form, taken

from [65], thm 5.3. In addition to the assumed convergence in the gap measure δ̂(Hn, H)→ 0,

we have to impose a somewhat technical condition, that ‖(H − λ)−1‖ is not constant on any
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open set [66]. Then for each ε > 0 and each compact K ⊂ C such that Ko ∩ σε(H) 6= 0, the

pseudospectra converge in the Hausdorff measure as

ρ
{
σε(Hn) ∩K, σε(H) ∩K

}
→ 0 (2.31)

Semiclassical pseudospectrum

Since having an unbounded ε-pseudospectrum disproves the existence of a bounded and

nonsingular metric, it could be in principle used to obtain rigorous proofs for such nonexistence,

establishing important no-go theorems in the spirit of [28]. The only problem is, that the

pseudospectrum may not be expressed in a closed form even for the simplest non-hermitian

operators. This problem is often remedied using semiclassical pseudospectrum.

The notion of semiclassical pseudospectrum arose from theory of semiclassical differential

operators in the works of Zworski and Davies [67, 68]. By a semiclassical differential operator,

we understand an operator made dependent on an auxiliary parameter h as

(Hhψ)(x) =
∑

aj(x)hjψ(j)(x) (2.32)

In complete analogy with eq. 2.7, we define the associated symbol for such an operator (which

may now have possibly non-constant coefficients) as a(x, ξ) =
∑
aj(x)(−iξ)j . The semiclassical

pseudospectrum is then a subset of complex plane defined as the closure of

Λ =

{
a(x, ξ)

∣∣∣∣∣ (x, ξ) ∈ R2,
1

2i
{a, a∗} (x, ξ) > 0

}
(2.33)

with {a, a∗} being the usual Poisson bracket. If we assume that our Hamiltonian is a Schrödinger

operator with complex analytic potential V (x), the associated symbol becomes a(x, ξ) =

−ξ2 + V (x) and the above definition reduces to

Λ =
{
ξ2 + V (x) | ξ ∈ R, ξ Im V ′(x) < 0

}
(2.34)

The importance of semiclassical pseudospectrum stems from a result concerning resolvent growth

inside Λ in the classical limit h → 0 (see [68], thm. 1). Its essential statement is, that for

any λ ∈ Λ exists some c > 1, such that z ∈ σε(Hh) for ε ≥ c−1/h. Consequently, for a given

Hamiltonian, the semiclassical pseudospectrum lies inside the ε-pseudospectrum for sufficiently

large values of ε.

This statement might be extended to non-semiclassical operators using the correspondence

between the semiclassical limit h → 0 and the high energy limit. For illustration of this

procedure, we select again the imaginary cubic oscillator. Following [69], we transform it into a

semiclassical operator for the purposes of the above theorem. If we define an unitary operator

(Uψ)(x) = τ 1/2ψ(τx) (2.35)

with h = τ−5/2, the transformation UHU † = τ 3Hh results in the cubic oscillator in its

semiclassical form Hh = −h2∆ + ix3. Since unitary transformations leave the pseudospectrum

unchanged, we have σε(H) = τ 3σε(Hh). The interior of semiclassical pseudospectrum of Hh
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may be computed directly as Λ = {λ ∈ C | Re λ > 0, Im λ 6= 0}. When performing the inverse

transformation with U †, one has to make certain estimates in order to proceed [69, 70]. The

final result may be established in the form of a set inclusion{
z ∈ C

∣∣∣∣ | arg z| < π

2
− δ, |z| ≥ max

{
c1, c2 (log ε)6/5

}}
⊆ σε(H)

in the sense, that for each δ > 0 exist c1,2 satisfying the inclusion. It is readily seen, that such

set extends infinitely far into right complex half-plane for any δ, clearly demonstrating the

nonexistence of a bounded nonsingular metric. The boundaries of this set for various values of

ε are, together with boundaries of actual pseudospectra, shown in fig. VII.

Re λ

Im λ

-8
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0 50

Figure VII: Imaginary cubic oscillator; scheme of actual pseudospectra (thick lines) together

with the sets defined in eq. 2.2.1 (filled) for multiple values of ε.

2.2.2 Discretization of differential operators

Numerical methods for solving (ordinary or partial) differential equations for a given initial or

boundary conditions are plentiful and well-developed. However, as long as we wish to obtain a

complete solution not tied down to particular initial conditions, these is often no help coming

from numerical analysis. For linear differential equations (where the knowledge of the complete

solution equals the knowledge of the corresponding operator spectrum), we can however try

to discretize the differential operator. The result of such operation would be a matrix of large

dimension and, hopefully, similar spectral properties

Virtually all differential operators encountered in quantum theory are Schrödinger operators

with local potentials V (x), the discretization of which is trivial. Consequently, the problem of

discretization degenerates basically into discretizing the operator of n-th derivative on various

domains, subject to various boundary conditions (for further references on this topic, see [71]

and [56], IX.43).

Basic method: finite differences

The most commonly encountered method for treating differential equations numerically is the

method of finite differences. This method works on a regular discrete grid, which we shall take

to be a one-dimensional equidistant set of points {x0, . . . , xn}. Its essence lies in interpolating

a chosen vector {u0, . . . , un} by values of a certain polynomial on the grid, and evaluate its

derivative at the nodes. The interpolation occurs locally, by choosing a different polynomial for

each respective node.
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Finite-difference methods are characterized by their order, corresponding to the order of

interpolating polynomials. The lowest applicable order is n = 2. In such case, given a vector

{u0, . . . , un}, we define a class of (uniquelly determined) degree 2 polynomials pj(x), such

that pj(xj−1) = uj−1, pj(xj) = uj and pj(xj+1) = uj+1. Setting Dijuj = p′i(xi) results in the

expression for the differentiation matrix, shown for n = 4 as

Dij =
1

2


−1

1 −1

1 −1

1 −1

1

 (2.36)

Finite difference methods of higher order may be defined analogically; a method of order n uses

polynomials of degree n interpolating n+ 1 adjacent nodes. All these methods result in banded

Toeplitz differentiation matrices with increasing number of diagonals. In the following, we are

going to discuss methods of spectral discretization, which aim to take this process into the limit

(resulting in non-banded, dense matrices). These methods often perform in orders of accuracy

better than finite difference methods.

Periodic domains: Fourier interpolation

On periodic domains, we may use another method of interpolation, taking inspiration from

Fourier analysis. It this case, the interpolants shall be global (ranging over the whole interval).

It should come as no surprise, that they shall emerge as trigonometric polynomials (that is,

polynomials in terms of sin(x) and cos(x)). We take our domain to be a one-dimensional circle,

or equivalently an interval [0, 2π] equipped with periodic boundary conditions. We discretize

the domain equidistantly, resulting in the nodes

xj =
2πj

n
(2.37)

In order to obtain the desired interpolating polynomial p(x), we apply the discrete Fourier

transform twice on a given vector (vk). The first application results in ṽk = 2π/n
∑n

j=1 e
−ikxjvj ,

while the second one, not constrained to discrete values of xj, provides the desired interpolant

p(x) =
1

2π

n/2∑
−n/2

eikxṽk (2.38)

Taking into account our assumption of equidistant grid, this interpolant may be computed in

a closed form ([71], sec. 3). As long as we write p(x) =
∑n

k=1 vkSn(x − xk), the quantity Sn
(which is essentially the interpolant of a δ-function) may be expressed as

Sn(x) =
sin(nx/2)

n tan(x/2)
(2.39)

This quantity encompasses complete information about differentiation matrices of arbitrary

order. The resulting matrices are again circulant and Toeplitz, they are however no longer

banded. As an example, the matrix expressing first derivative may be written as
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Di−j = S ′n(xi−j) =

1
2
(−1)j−i+1 cot

(
(j−i)π
n

)
for j 6= i

0 for j = i
(2.40)

Note that this matrix still remains anti-hermitian, an expected property of the derivative

operator. Differentiation matrices of higher order may be constructed analogically.

Nonperiodic domains: orthogonal polynomials

For operators on non-periodic domains, the Fourier analysis approach is no longer applicable,

and the interpolants have to be chosen as common (non-trigonometric) polynomials. However, it

turns out we might get substantially more precise numerical methods by using global interpolants

and modifying the underlying grid, so that the points are no longer equidistant. In particular,

the grid might be chosen as the set of roots of some orthogonal polynomial. For simplicity, we

discuss here the case of a bounded interval, and use the Chebyshev polynomials throughout

this section. The Chebyshev nodes, clustering towards the boundaries of the interval, admit a

closed-form expression

xj = cos

(
jπ

n

)
(2.41)

The rest of the construction algorithm proceeds in complete analogy with the method of finite

differences. We take p(x) to be the unique degree n polynomials interpolating a selected vector

(vn), and set p′(xj) = Dijvj , with Dij being the discretization matrix. The result is now neither

anti-hermitian, nor Toeplitz. Still, its elements may be expressed through a sufficiently simple

formula, as shown in fig. VIII (for derivation, see [71], ex. 6.1).

D
(n)
ij =

−xj
2(1−x2j )

− (−1)n

2

2n2+1
6

−2n2+1
6

(−1)n

2

2(−1)j

1−xj

−2(−1)n+j

1+xj

(−1)n+i

2(1+xi)

− (−1)i

2(1−xi)

− (−1)i

2(1−xi)

− (−1)i

2(1−xi)

Figure VIII: The n× n differentiation matrix arising from the Chebyshev interpolation method.

The inner square is a (n − 2) × (n − 2) matrix, while the remaining boxes are scalars and

(n− 2)-dimensional vectors.

For bounded intervals, the need of imposing some kind of boundary conditions often arises at the

ends of the interval. The effect of those conditions on discretized operators is a delicate subject,

with little to none generally applicable procedures. However, the probably most encountered
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case - homogeneous conditions at the boundary - is known to be very faithfully represented by

stripping the first and last rows and columns of the matrix (see [71], sec. 13).

In principle, one can construct a variety of discretization methods using any series of

orthogonal polynomials. The choice of particular polynomial family is a matter of taste and

experience, the only requirement being that the domain of the polynomials coincides with the

domain of the operator to be discretized. As an example, for discretization of operators acting

on the real half-line (0,∞), a convenient choice of grid points is the set of roots of a n-th order

Laguerre polynomial [72].
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Chapter 3

Applications to simple differential

models

Quasi-hermitian theory may be seen as conceptually well understood, applying its machinery

to differential Schrödinger operators however raises several problems, which are difficult to

overcome. The biggest hindrance appears to be the non-locality of the physical hermitian

partners corresponding to those operators [73]. On the other hand, the proper treatment of

quasi-hermitian Schrödinger operators is absolutely essential for the future success of the theory,

making it probably the primary subject of the field.

In this section, we address two simple examples of differential non-hermitian Hamiltonians,

which correspond to two basic schemes for construction of such operators. While the first

example appears as a result of quantizing a classical system with dissipative and nonconservative

forces, the other one arises by a direct coupling modification of an originally hermitian quantum

Hamiltonian.

3.1 Branched Hamiltonians

This section, inspired directly by [10], intends to provide some basic insight into the theory

of classical multi-valued Hamiltonians and their quantization. In order to discuss properties

of multi-valued Hamiltonians, we start from the field of classical physics, making all the

Lagrangians and Hamiltonians of this section (configuration-space or phase-space) functions

instead of Hilbert space operators.

The appearance of multi-valued Hamiltonians in classical physics can have at least two

origins. They can be either Legendre transformed Lagrangians whose velocity dependence is not

convex, in particular Lagrangians depending on the velocity more than quadratically [74, 75,

76, 77]. Alternativelly, they may also arise as continuous interpolations of certain discrete (e.g.

chaotic) dynamical systems [78, 79]. As one of the simplest examples, consider the Lagrangian

of [75]

L(x, ẋ) =
ẋ4

4
− κẋ2

2
(3.1)

The process of Legendre transforming this Lagrangian with respect to ẋ is singular for κ > 0,



since the canonical momentum p = ẋ3 − κx can have either one or three values of ẋ for a given

p. Consequently, the corresponding Hamiltonian is a multivalued function of momentum, as

illustrated by the energy-momentum graph in fig. IX.

p

E

Figure IX: The relationship between energy and momentum of eq. 3.1 as a multivalued function

in the E − p plane.

More complicated and realistic Lagrangians have been considered, some of them inspired

directly by eq. 3.1. One such representative model, a direct predecessor of our considerations,

was recently analyzed in [77]. Its Lagrangian, indexed by an auxiliary parameter m, has the

form

L(x, ẋ) = (ẋ− 1)
2m−1
2m+1 − V (x) (3.2)

where the roots of this expression are always taken to be real, regardless of the actual sign of

ẋ− 1. Since the corresponding momentum p(x, ẋ) is now a double-valued function, applying

the usual Legendre transform on this Lagrangian results into a pair of Hamiltonians

H± = p± 1

m− 2
p

1−2m
2 + V (x) (3.3)

A curious result is obtained by choosing m = 1. In such case, the two branches of the quantized

counterpart of eq. 3.3 are actually supersymmetric partners in the spirit of eq. 2.13, and might

be written in the momentum space as H− = a†a and H+ = aa† with

(aψ)(p) = ψ′(p) +
√
p ψ(p) (3.4)

3.1.1 Our model

In [10], we have considered a Lagrangian, which may be seen as a direct generalization of eq. 3.2.

The core of this generalization lies in the introduction of a general function f(x) in place of the

original f(x) = −1, making the resulting Lagrangian look as

L(x, ẋ) = C(ẋ+ f(x))
2m+1
2m−1 − δ C =

(
1− 2m

1 + 2m

)
δ

2
1−2m (3.5)

The normalization constant C is chosen with regard to future computations, with the auxiliary

parameter δ being restricted to δ > 0. In our considerations, we have omitted the explicit
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presence of a potential function V (x), which has to be discussed independently. The canonical

momentum of our Lagrangian is given by

p(x, ẋ) =
∂L

∂ẋ
= −δ 2

1−2m (ẋ+ γf(x))
2

2m−1 (3.6)

which can be easily inverted to yield the double-valued relation for the velocity ẋ, paralleling

the result of [77]

ẋ(x, p) = −f(x) + δ(±p) 2m−1
2 (3.7)

The corresponding Hamiltonian for a general m has consequently also a double-valued structure,

expressed by its subscript

H±(x, p) = −pf(x)− 2δ(±p) 2m+1
2

2m+ 1
+ δ (3.8)

The success of expressing this generalized double-valued Hamiltonian explicitly may be certainly

encouraging, and provoke introduction of quantization schemes in parallel to [77]. Before we

come to that, we discuss a special choice of f(x), which shall link our general Lagrangian to a

well-known evolution equation of great phenomenological interest.

The Lienard-type oscillator

One of the principal motivations for the introduction of eq. 3.5 has been the search for a classical

as well as quantum dynamical description of a cubic oscillator being subject to a damped

nonlinear force. Classically, this system may be described by an equation

ẍ+ kxẋ+
k2

9
x3 + λx = 0 λ > 0 (3.9)

with kxẋ playing the role of the damping. This is a nonlinear autonomous differential equation of

Liénard type. Such equations appear commonly in optics [80] as well as theory of Bose-Einstein

condensates [81, 82]. However, the presence of the damping might be challenging, when one

tries to quantize the system [83]. The Lagrangian description of the above system was examined

in detail in [84], where a convenient Lagrange function leading to eq. 3.9 was found to be

L(x, ẋ) =
27λ3

2k2

(
kẋ+

k2x2

3
+ 3λ

)−1

+
3λẋ

2k
− 9λ2

2k2
(3.10)

This Lagrangian, being convex in the velocities, does not provide any obstacles in transition to

the corresponding Hamiltonian description, with the result

H(x, p) =
9λ2

2k2

(
2− 2

√
1− 2kp

3λ
+
k2

9λ
− 2kp

3λ
− 2k3x2p

27λ2

)
(3.11)

Despite having such a nonstandard form, this Hamiltonian may be expressed as H(x, p) =

f(p)x2 + U(p) for appropriately chosen functions f(p) and U(p). We shall see, that this

Hamiltonian arises as a special case of eq. 3.8. As a first step, we set m = 0 in eq. 3.5, making

the corresponding Hamiltonian degenerate into a deceptively simple form
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H±(x, p) = −pf(x)∓ 2δ
√−p+ δ (3.12)

It is readily noticed that the real or the complex character of H± depends on the signs of the

momentum p. In addition, once we specify the previously undetermined function f(x) and the

parameter δ to be

f(x) =
λ

2
x2 +

9λ2

2k2
, δ =

9λ2

2k2
(3.13)

followed by a shift and translation p→ 2k
3λ
p− 1, we arrive at our desired Hamiltonian form of

eq. 3.11 as a plus branch of the following double-valued expression

H±(x, p) =
9λ2

2k2

[
2∓ 2

√
1− 2kp

3λ
+
k2x2

9λ
− 2kp

3λ
− 2k3x2p

27λ2

]
(3.14)

We have to stress that actually both of these Hamiltonians are equally plausible models for

the nonlinear system of eq. 3.9. Furthermore, in both H±, the presence of a linear harmonic

oscillator potential is revealed in the limit k → 0. Actually, as observed in [85], eq. 3.9 can always

be converted to a harmonic oscillator form under the nonlocal transformation U = xe
k
3

∫
x(τ)dτ .

It is interesting to note, that the Lagrangian in eq. 3.10 is not the only one describing the

damped cubic oscillator system. Already in [85], it was noted that an alternative, but still

completely equivalent, description of dynamics is provided by the Lagrangian

L(x, ẋ) =

(
k2x2

3
+ 3λ− kẋ

)−1

(3.15)

Using for the last time the machinery of Legendre transform leads first to the canonical

momentum

p(x, ẋ) =
∂L

∂ẋ
=

1

k

(
kx2

3
+

3λ

k
− ẋ
)−2

(3.16)

then, by inversion, to the (double-valued) expression for the velocity

ẋ =
kx2

3
+

3λ

k
± 1√

kp
(3.17)

and finally to an alternative double-valued Hamiltonian, which serves as a description of eq. 3.9,

equivalent to eq. 3.8.

H±(x, p) =
k

3
x2p+

3

k
λp∓ 2

√
p

k
(3.18)

The component H+ for k < 0 has earlier been found to possess interesting λ = 0 limit [85].

Having two Hamiltonian description of the same system might appear superfluous, it shall

however prove very handy in quantizing the system.
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3.1.2 Quantization

Quantization of non-standard Hamiltonians H(x, p) 6= p2 + V (x) is a subject of active research,

and must be definitely perceived more as a creative than algorithmic process. A particular

scheme for quantizing Hamiltonians with variable mass

H(x, p) =
p2

2m(x)
+ V (x) (3.19)

has been suggested by von Roos et al. in [86, 87]. The essence of their considerations is, that the

quantized counterparts of eq. 3.19 can acquire a general form depending on three parameters

α, β, γ

H =
1

4

(
mα(x)i

d

dx
mβ(x)i

d

dx
mγ(x)

)
+ V (x) (3.20)

as long as α + β + γ = −1. Every quantum Hamiltonian satisfying this condition may be

seen as a quantum counterpart of eq. 3.19, with the respective Hamiltonians being in general

nonequivalent for different α, β, γ. This strategy was employed in [84] to quantize our Lienard-

oscillator nonlinear system. The Hamiltonian of the system has precisely the form of eq. 3.19,

only with p and x interchanged; H(x, p) = x2/2m(p) + V (p). The corresponding functions are

m(p) =
1

λ
(
1− 2k

3λ
p
) U(p) =

9λ2

2k2

(√
1− 2k

3λ
p− 1

)2

(3.21)

The quantized Hamiltonian is shown in [84] to possess remarkable results for parameters

satisfying 4α(α + β + 1) = 1/4. Under this condition, the corresponding Schrödinger equation

becomes exactly solvable, with the spectrum becomes identical to the common linear harmonic

oscillator.

In this note, we aim to extend the quantization scheme to our type-II Hamiltonian of eq. 3.18.

Assuming k > 0, and by adapting the same procedure as outlined above, we end up with the

Schrödinger equation

3

kp
H±(x, p) = − d2

dp2
∓ 6√

k3p
+

9

k2
λ (3.22)

After the change of variables p = r2 and p ψ(±)(p) = r3/2χ(r), we acquire the equation in a

more natural-looking form

− χ′′(r) +
3

4r2
χ(r) +

36

k2
r2χ(r)∓ 24

k3/2
rχ(r) =

12

k
E(±)χ(r) (3.23)

This differential equation, to the best of our knowledge, cannot be solved exactly, due to the term

linear in r. It is however well-suited for application of the Rayleigh-Schrödinger perturbation

theory. As long as we denote ∓ 24
k3/2

r = gV , we may decompose the Hamiltonian together with

its eigenvalues and eigenfunctions as

H = H0 + gV, E =
∞∑
m=0

gmEm (3.24)

39



with H0 denoting the radial harmonic oscillator Hamiltonian having eigenvalues E
(n)
0 = ω(4n+

2l + 3) and frequency ω = 6s−1. In the next step, we would only have to insert these formulas

into the Schrödinger equation and write down the corresponding eigenvalues

E(±)
n = 2n+ 2∓ ξn n ∈ N0 (3.25)

where ξn needs to be evaluated numerically. While the absence of solvability may seem daunting

at first, it is actually a sign of a great progress. While the quantized form of eq. 3.11 essentially

degenerates back to the common harmonic oscillator, applying the same procedure for eq. 3.18

yields a brand new quantum system, which provides a far more promising description for the

quantum analogue of the damped cubic oscillator.

3.2 The inverse square root potential

Since a full classification of quantum potentials in the hypergeometric family has been achieved

[49], the focus of researchers has turned to more general potentials, solvable in terms of Heun

functions of various kinds. Recently, a potential with behavior closely related to the more

famous hydrogen atom has been conjectured to contain interesting properties regarding its

solvability [88]. The potential depends on the inverse square root of the radial coordinate,

giving rise to the Schrödinger equation

− ψ′′(x)− e2

√
x
ψ(x) = Eψ(x) (3.26)

acting on (0,∞) with ψ(0) = 0. In analogy with the hydrogen atom, the Hamiltonian may be

expected to contain bands of bound-state and scattering energies. The fundamental idea of [88]

is, that although eq. 3.26 itself gets solved in terms of tri-confluent Heun functions, the solution

may be expressed using derivatives of much more accessible confluent hypergeometric functions

ψ(x) = e−kx
d

dy

{
c1e
−
√
ay

1F1

(
−a

2
,
1

2
; y2

)
+ c2e

−
√
ayHa(y)

} ∣∣∣∣∣
y=
√
δx+
√

2a

(3.27)

with k2 = −E and a = e4/2k3. For future convenience, one of the solutions has been expressed

using the Hermite function Ha(x), which generalizes the notion of Hermite polynomials to

arbitrary values of a, and which may be itself written in terms of hypergeometric functions

Ha(x) = 2a
√
π

{
1

Γ(1−a
2

)
1F1

(
−a

2
,
1

2
; z2

)
− 2z

Γ(−a
2
)

1F1

(
−1− a

2
,
3

2
; z2

)}
(3.28)

In search for the eigenvalues, the general solution of eq. 3.26 must be complemented by conditions

of normalizability, realized by the vanishing of the wavefunction at infinity. While this condition

results in

c1

c2

=
2a 1F1

(
1− a

2
, 3

2
, 2a
)

+ 1F1

(
−a

2
, 1

2
; 2a
)

√
2aHa−1

(√
2a
)
−Ha

(√
2a
) (3.29)
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the boundary condition at the origin yields the final secular equation expressed in terms of

Hermite functions, whose roots concide with the eigenvalues of eq. 3.26.

√
2aHa−1

(
−
√

2a
)
−Ha

(
−
√

2a
)

= 0 (3.30)

Although this equation does not admit its roots to be expressed in a closed form, it allows in

principle for solving to arbitrary precision, with the graphical result shown in fig. X. Furthermore,

a high-precision approximation technique, outlined also in [88], enables us to express the n-th

eigenvalue approximately as

En = −
(
e2

2

)4/3(
n− 1

2π

)−2/3

(3.31)

xE

-1

0

20 40

Figure X: Bound states of the inverse square root potential well.

3.2.1 Intermezzo: PT-symmetrization of the hydrogen atom

We aim to define a consistent quasi-hermitian counterpart of the square-root potential by

allowing general complex values of its coupling constant. With this in mind, it is instructive

to review the procedure of PT-symmetrizing the hydrogen atom [89, 90], a model whose role

in the development of quantum theory can hardly be overemphasized. We shall express its

Hamiltonian in its radial form, indexed by the angular momentum `, and giving rise to a

Schrödinger equation

− ψ′′(x) +
`(`+ 1)

x2
ψ(x)− e2

x
ψ(x) = Eψ(x) ` = 0, 1, . . . (3.32)

defined again along the half-line x ∈ (0,∞). From physical viewpoint, the model contains a

combination of the bound-state and scattering spectrum, demonstrating (historically for the

first time), that confinement of electrons in atoms takes place only at sufficiently low energies.

On the side of mathematics, the Hamiltonian has proven exactly solvable in terms of confluent

hypergeometric functions. For the (negative) bound states with E = −k2, one may express the

general solution asψ(x) = c1ψ1(x) + c2ψ2(x) with
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ψ1(x) = e−kxx`+1
1F1

(
1 + `− e2

2k
, 2`+ 2, 2kx

)
ψ2(x) = e−kxx−`1F1

(
−`− e2

2k
,−2`, 2kx

) (3.33)

Moreover, under standard physical boundary conditions, the confluent hypergeometric functions

in eq. 3.33 degenerate to normalizable Laguerre polynomials, and the bound-state energy

eigenvalues En become expressible in a closed form

En = − e4

2n2
(3.34)

These energies re-emerge also as poles of the scattering matrix, which may be curiously also

expressed by a closed formula (together with the coefficients of transmission and reflection) as

S(k) =
Γ
(
l + 1 + ie2

2k

)
Γ
(
l + 1− ie2

2k

) (3.35)

In [89] it has been shown, that most of the remarkable formal properties of this Hamiltonian

survive also a modification provided by quasi-hermitian theory. The essence of this modification

lies in replacing eq. 3.32 by a purely imaginary coupling term, the resulting equation being

− ψ′′(x) +
`(`+ 1)

x2
ψ(x)− ie2

x
ψ(x) = Eψ(x) ` = 0, 1, . . . (3.36)

In order to remain in the domain of quantum mechanics and keep the spectrum of eq. 3.36 real,

this change in the potential has to be complemented by a reinterpretation of the observable

coordinate x. The new coordinate can be defined a number of ways, among which the authors

of [89] have chosen the U -shaped complex curve x(s) shown in fig. XI.

Re λ

Im λ

ε

Figure XI: A complex integration curve x(s) of the PT-symmetric Schrödinger eq. 3.36, which

has been chosen instead of the usual real half-line (0,∞).

In our definition, this curve admits a single degree of freedom, realized by the parameter ε and

expressing the winding distance of the curve from the origin. The curve may be parametrized

by a coordinate-like real variable s ∈ (−∞,∞), with the result
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xU(ε)(s) =


−i
(
s+ π

2
ε
)
− ε s ∈ (−∞,−π

2
ε)

ε exp
{
i
(
s
ε

+ 3π
2

)}
s ∈ (−π

2
ε, π

2
ε)

i
(
s− π

2
ε
)

+ ε s ∈ (π
2
ε,∞)

(3.37)

This transition has a number of important consequences. First, the original integer-valued

angular momentum ` loses this physical interpretation, and gets a new status of a mere real

index parameter (which is no longer constrained to half-integer values).

Second, in order to stay in the realm of quantum mechanics, one has to impose a requirement

of stability (boundedness from below) on the Hamiltonian. Without this condition, the

Hamiltonian cannot play the role of energy of any measurable system. This has important

consequences, since computing the spectrum of eq. 3.36 indeed demonstrates its instability

[91]. A remedy proposed in [89] lies in the transition from a (positive) mass m to its negative

counterpart −m, taking inspiration from a recent renewed interest in theories with indefinite or

negative mass. In this setting, the bound states may be readily constructed as

E±n = −
(

e2

2`+ 1± (2n+ 1)

)2

(3.38)

This spectrum is now safely bounded from below and moreover (curiously) independent on the

parameter ε. In the subsequent considerations [90], it turned out that not only the eigenvalues,

but also the scattering data of the newly emerged model can be obtained explicitly. We use the

well-known |z| → ∞ asymptotics of the hypergeometric function

1F1(a, b, z) ∼ Γ(b)

Γ(b− a)

eiπa

za
+

Γ(b)

Γ(a)
ez (3.39)

valid for 0 < arg z < π (where the term eiπa emerges when rotating the usual textbook result

valid on −π/2 < arg z < π/2). The infinite range of the Coulomb potential gets manifested in

an additional term in the long-range asymptotics of the PT-symmetrized model

ψj(s→ +∞) ∼ aj+ exp

(
iks+

ie2

2k
ln(2ks)

)
+ bj+ exp

(
−iks− ie2

2k
ln(2ks)

)
ψj(s→ −∞) ∼ aj− exp

(
iks− ie2

2k
ln(2ks)

)
+ bj− exp

(
−iks+

ie2

2k
ln(2ks)

) (3.40)

When computing the scattering quantities, one must take into account that the forward and

backward coefficients of reflection and transmission are generally not equivalent for non-hermitian

systems. Still, they may be expressed from eq. 3.40 in a sufficiently simple fashion in terms of

aj and bj [92]. In the present case, the coefficients may be (after some formal manipulations)

expressed in a very neat form
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TL→R(k) =
a2+b1+ − a1+b2+

a2−b1+ − a1−b2+

=
i

2π
e−iπkεΓ

(
−`− ie2

2k

)
Γ

(
`+ 1− ie2

2k

)
RL→R(k) =

b1+b2− − b1−b2+

a2−b1+ − a1−b2+

= TL→R(k) e−2kε (cos(2π`)− 1)

TR→L(k) =
a2−b1− − a1−b2−

a2−b1+ − a1−b2+

= −TL→R(k)

RR→L(k) =
a1+a2− − a1−a2+

a2−b1+ − a1−b2+

= TR→L(k) e2kε

(3.41)

which readily reproduces the bound-states from eq. 3.38 as poles of TR→L. The natural step

in this moment would lie in using the tools of quasi-hermitian theory to construct certain

admissible set of physical metrics Θ for this PT-symmetrized Hamiltonian. This is however

conjectured to be a difficult task, and numerous attempts for such construction have been

proven unsuccessful over the years.

3.2.2 Asymptotic analysis and scattering

Here we aim to generalize the considerations of the previous section to the inverse square

root potential. We shall not consider the bound-state regime, and focus instead solely on the

scattering scenario. This most certainly motivates further research, as bound states certainly

exist for the PT-symmetrized inverse square root model, and it is customary to know whether

they correspond to real eigenvalues.

Regarding the asymptotics, we might once again make advantage of eq. 3.27. Although

the asymptotic theory of general Heun functions is currently not very well explored, using this

relationship brings the problem down to determining the asymptotics of confluent hypergeometric

functions, a problem discussed already in eq. 3.39. On the real line, the long-range asymptotics

may be computed by simple insertion as

ψ(x) ∼ exp

(
ikx− e2

k

√
ix− e4

8k3
ln(ix)

)
for x→∞ (3.42)

The situation gets slightly counterintuitive when we move to the complex asymptotic domain

of x and to a non-hermitian, PT-symmetric version of the Hamiltonian defined on the exactly

same contour as the hydrogen atom, depicted in fig. XI. The choice of the contour is again

guided by a close similarity of the inverse square root and Coulomb hamiltonians (different

choices of the contour are successful for infinite potential wells, see [93]). In this scenario, we

obtain a pair of independent asymptotic solutions of our PT-symmetric Schrödinger equation

(parametrized again by x[s]) as

ψj(x) ∼ aj− exp

(
−iδs

2
+
√

2aδis+ a ln(is)

)
+ bj− exp

(
iδs

2
−
√

2aδis− a ln(is)

)
ψj(x) ∼ aj+ exp

(
−iδs

2
+
√

2aδis+ a ln(is)

)
+ bj+ exp

(
iδs

2
−
√

2aδis− a ln(is)

)
(3.43)
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which indeed degenerate to the usual plane waves whenever e → 0, or equivalently a → 0.

These plane-like waves are again deformed by two non-negligible subdominant contributions,

induced by the infinite range of the potential. Nevertheless, we may still treat them as incoming

and outcoming waves and use the powerful machinery of scattering theory. Making the analogy

with the hydrogen atom complete, we compute the respective coefficients

a1+ = c1 e
iδπε/4e−δε/2e−2a

√
2a

Γ
(

1+a
2

) b1+ = c1 e
−iδπε/4eδε/2e2a a

Γ
(

2−a
2

)
a1− = c1 e

−iδπε/4e−δε/2e2a a

Γ
(

2−a
2

) b1− = c1 e
iδπε/4eδε/2e−2a

√
2a

Γ
(

1+a
2

)
a2+ = c2 e

iδπε/4e−δε/2e−2a −
√

2a

Γ
(

2+a
2

) b2+ = c2 e
−iδπε/4eδε/2e2a 1− a

Γ
(

3−a
2

)
a2− = c2 e

−iδπε/4e−δε/2e2a 1− a
Γ
(

3−a
2

) b2− = c2 e
iδπε/4eδε/2e−2a −

√
2a

Γ
(

2+a
2

)
(3.44)

from which the final coefficients of transmission and reflection may be computed. In this case,

the factorization process simplifying the results does not occur, so that we are left with the

more complicated formulas

TL→R =
a2+b1+ − a1+b2+

a2−b1+ − a1−b2+

= eiδπε/2e−4a

−
√

2a3

Γ( 2+a
2

)Γ( 2−a
2

)
−
√

2a(1−a)

Γ( 1+a
2

)Γ( 3−a
2

)
√

2a(1−a)

Γ( 2−a
2

)Γ( 3−a
2

)
− a(1−a)

Γ( 2+a
2

)Γ( 3−a
2

)

RL→R =
b1+b2− − b1−b2+

a2−b1+ − a1−b2+

= eiδπε/2e−4a

−
√

2a(1−a)

Γ( 2+a
2

)Γ( 3−a
2

)
−

√
2a3

Γ( 1+a
2

)Γ( 2−a
2

)

a(1−a)

Γ( 2−a
2

)Γ( 3−a
2

)
− a(1−a)

Γ( 2−a
2

)Γ( 3−a
2

)

TR→L =
a2−b1− − a1−b2−

a2−b1+ − a1−b2+

= eiδπε/2e−4a

−
√

2a3

Γ( 3+
2

)Γ( 1+a
2

)
−
√

2a(1−a)

Γ( 2+a
2

)Γ( 3−a
2

)

a(1−a)

Γ( 2−a
2

)Γ( 2−a
2

)
− a(1+a)

Γ( 2−a
2

)Γ( 3−a
2

)

RR→L =
a1+a2− − a1−a2+

a2−b1+ − a1−b2+

= eiδπε/2e−4a

−
√

2a(1−a)

Γ( 1+a
2

)Γ( 2−a
2

)
−

√
2a3

Γ( 2+a
2

)Γ( 3−a
2

)

a(1−a)

Γ( 2−a
2

)Γ( 3−a
2

)
− a(1−a)

Γ( 2−a
2

)Γ( 3−a
2

)

(3.45)

Such behavior is completely expected, since the factorization of transmission coefficients would

lead to (nonexistent) closed-form expressions for the spectrum. A recent idea, which could in

principle solve this apparently troubling phenomenon [94], suggests that solvability may be

reestablished by generalizing the inverse square root potential into

V (x) =
α1√
x

+
α2

x
+

α3

x3/2
(3.46)

and making a certain convenient choice of the parameters αi. This phenomenon is usually

referred to as conditionally exact solvability in the literature [95].
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Chapter 4

Applications to realistic

finite-dimensional models

In the usual quantum description of bosonic systems, the underlying Hilbert space is always

assumed infinite-dimensional. This is a necessary consequence of the Stone-Von Neumann

theorem about unitary representations of canonical commutation relations ([14], thm. 8.2.4).

On the other hand, fermionic anticommutation relations can be (and most often are) unitarily

represented in a finite-dimensional Hilbert space. Fermionic systems are of course ubiquitous

in quantum mechanics, and form the very core for the theories of condensed matter and solid

state. This alone provides a strong motivation for studying finite-dimensional quasi-hermitian

operators [96, 97].

Finite-dimensional Hamiltonians may be also regarded as approximate description of bosonic

systems. Because of their mathematical simplicity, they can be used to address phenomena

difficult to describe in infinite dimensions. Quasi-hermitian operators are no exception to this

rule. They have been used to model quantum phase transitions [9], quantum catastrophes [8]

or simplified big-bang scenarios [98]. The objects of interest in these models are the exceptional

points [64, 99], which emerge inevitably on boundaries of observability domains.

4.1 The Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model is a simple many-body system, originally introduced

in [100] to describe a 1D array of polyacetylene, shown in fig. XII. Thanks to its nontrivial

spectral properties, it has later found numerous applications in solid state theory, most recently

as a simple conceptual example of a topological insulator [101].

n

C

C

C C C C

H H H H H

C C C C

H H H H H

Figure XII: Chain of polyacetylene, which motivated introduction of the SSH model



The difference between the single and the double bonds in the above scheme is governed by

the control parameter called θ, which shall be allowed to vary continuously. The number of

polymerized sites is denoted by n ∈ N. so that the number of carbon atoms is 2n. We write the

SSH Hamiltonian in its second-quantized form

H
(n)
SSH =

n∑
i=1

{
t(1−∆ cos θ)a†2i−1a2i + t(1 + ∆ cos θ)a†2ia2i+1 + h.c.

}
(4.1)

with h.c. denoting hermitian conjugate, and a†i , ai being i-th site fermionic creation and

annihilation operators. We can safely assume that t = ∆ = 1, since the physical properties

of the system are not altered by those parameters. Furthermore, we also rescale the control

parameter as λ = cos θ. The SSH model has two topologically distinct phases depending on the

value of λ, as may be seen in fig. XIII. For λ > 0, there is an extra state (usually called the

edge state), which completely changes its spectral topology.

θ

E

-2

2

−π π

Figure XIII: Spectrum of the n = 50 hermitian SSH model as a function of θ, demonstrating

two topologically distinct phases.

Since we are dealing with a non-interacting system, it is possible to substitute the usual 22n×22n

Fock matrix representation by a 2n × 2n matrix, whose (ij)-th element is the coefficient in

front of a†iaj. This matrix shares the spectrum (though not the degeneracies) with the actual

SSH model (see [102], thm. 7.1.1), and the spectrum spectrum may be expressed exactly as

E(k) = ±
√

2 + 2 cos2 θ + 2(1− cos2 θ) cos k. In a recent paper [103], the authors suggested to

complement the hermitian SSH model with a non-hermitian interaction term

HI = iγa†1a1 − iγa†nan (4.2)

which may be understood as a complemented source and sink of equal strength. The resulting

Hamiltonian H = HSSH + HI is not hermitian, it is however manifestly PT-symmetric. Its

spectrum can be no longer expressed through a closed formula, but numerical experiments

indicate, that its eigenvalues remain real for γ sufficiently small. Using the 2n × 2n non-

interacting representation, the matrix Hamiltonian can be written (for n = 2, with higher

dimensions analogically) as

H(2) =


γ −1− λ

−1− λ −1 + λ

−1 + λ −1− λ
−1− λ γ∗

 (4.3)
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Note that in [103], the authors only examined the case of γ being purely imaginary. The effects

of general complex γ are illustrated in fig. XIV for three particular values of γ = ρ+ iω. As a

general feature, the bulk states are largely unaffected by modification of the parameters. On

the other hand, the edge state behaves very sensitively to such perturbations and might even

completely change the resulting topology.

(a) γ = 0.5i
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(b) γ = 0.5i+ 1
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(c) γ = 0.5i+ 2
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E
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−π π

Figure XIV: Real and complex parts of the spectrum for HSSH +HI with n = 100.

In the forthcoming search for metrics for our non-hermitian model, we shall start with dis-

cussing the special case λ = 0 separately. Curiously enough, such Hamiltonian was discovered

independently by applying equidistant discretization methods to a PT-symmetric Laplacian on

a finite real interval, say [−1, 1], subject to complex Robin boundary conditions

ψ′(±1) = (±iα + β)ψ(±1) (4.4)

with α, β ∈ R. This is one of the few infinite-dimensional quasi-hermitian Hamiltonians known

to admit a metric to be constructed explicitly, at least for β = 0 [104, 105]. In the subsequent

examination of its discretized counterpart, a complete analogy of this metric was constructed

also for any finite dimension [106],. The relationship between the λ = 0 SSH model and the

discretized Laplacian may be expressed through a nonlinear coordinate transformation

ω =
β

(1− α)2 + β2
ρ =

1− α
(1− α)2 + β2

(4.5)

The domains of quasi-hermicity in the parameter space using both coordinate systems are

shown in fig. XV. Their non-shrinking behavior of these domains in the limit n→∞ is just

another manifestation of the nontrivial infinite-dimensional limit operator of eq. 4.4.

4.1.1 The universal metric

Finite-dimensional operators are by definition open to construction of the general metric

numerically, in principle to arbitrary precision. However, our aim in this section is to obtain

the results exactly in terms of closed formulas. Before we proceed further, we make precise the
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Figure XV: Boundaries of observability domains for the λ = 0 SSH model, drawn for n = 3

(blue) n = 4 (green) and n = 5 (red).

concept of universal metric for finite-dimensional operators. On a Hilbert space of dimension n

and for a given quasi-hermitian operator H, the most general metric operator has n degrees of

freedom and can be written as

Θ =
n∑
k=1

κn|n〉〈n| (4.6)

where |n〉 are the eigenvectors of H† and κn > 0. This n× n metric with n degrees of freedom

is then called the universal metric. In principle, we could always compute these eigenvectors

and express Θ through the formula above. This is however not very effective in general, as the

actual possibility of computing such eigenvectors diminishes quickly with growing n. We use

another method, much more useful in practice. For sufficiently small dimensions, we manipulate

the equation symbolically (using any computed algebra program) and try to isolate patterns

valid also for higher dimensions.

In order to use such strategy, we have to drop the condition of positivity for eq. 4.6. The

resulting object is usually called a pseudometric and denoted by the letter P . Again, this general

pseudometric has n degrees of freedom, and thus can be expressed as a linear combination of n

matrices. The search for such matrices shall occupy a central portion of the following text. As

for eq. 4.3 with λ = 0, we arrive at the n = 4 result

P(1) =


1 −iω −iωξ −iωξ2

iω 1 −iω −iωξ

iωξ∗ iω 1 −iω

iωξ∗2 iωξ∗ iω 1

 P(2) =


1 −iω −iωξ

1 ρ 1 −iω

iω 1 ρ 1

iωξ∗ iω 1



P(3) =


1 −iω

1 ρ 1

1 ρ 1

iω 1

 P(4) =


1

1

1

1


(4.7)
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where we denoted ξ = ρ − iω. Note that P(1) is positive by itself and generalizes the ρ = 0

result of [106], while P(4) realizes a discrete operator of parity (and shows that the model

is PT-symmetric in the usual sense). This result clearly suggests an extrapolation pattern

for higher n. In this pattern, the pseudometric with subscript k has 2(n − k) + 1 nonzero

antidiagonals, with the nonzero elements listed in tab. A.

element position

−iωξi−j−k i− j ≥ k

iωξ∗(i−j−k) j − i ≥ k

ρ |i− j| < k, i+ j − k even

1 |i− j| < k, i+ j − k odd

Table A: Nonzero elements of the pseudometric P(k)
ij for the SSH model of eq. 4.1 with λ = 0.

This scheme was successfully verified up to n = 12 in subsequent computations. Alternatively,

one could prove the general result by double induction on n and k, following the footsteps of prop.

2 in [106]. This result is certainly encouraging, since having a complete set of pseudometrics

obtainable in a closed form is a rare property even among finite-dimensional Hamiltonians.

Having successfully constructed a complete set of pseudometrics, the final part of our task

would, in principle, consist of verifying the condition of positivity of the resulting general

n-parametric linear combination of P(k). This is greatly simplified by the fact, that the

pseudometric P(1) is positive by itself, and thus a genuine metric. Consequently, we might

employ the powerful machinery of perturbation theory and write

Θ = P(1) + ε2P(2) + · · ·+ εnP(n) (4.8)

where the range of εi preserving the positivity of Θ has to be in general determined numerically.

For purposes of clarity, we address shortly another special case, γ = 0 with λ arbitrary. Such

model is manifestly hermitian, which however does not stop the quasi-hermitian machinery

from working. As long as we denote + = 1 + λ and − = 1− λ, we may write

P(1) =


1

1

1

1

 P(2) =


−

+ +

− −
+

 P(3) =


1

1 1

1 1

1

 P(4) =


−

+

−
+

 (4.9)

The formulas for general n ∈ N are clear from these expressions, with the nonzero elements

(arranged again into a chessboard pattern) acquiring just three possible values 1,+,−. Finally,

we aim to merge together the results for nonzero λ and γ. In order to do this, we formulate a

general ansatz, taking inspiration from results for both γ = 0 and λ = 0, and summarized for

n = 6 in fig. XVI.

Inserting this ansatz into eq. 1.2 with our non-hermitian SSH Hamiltonian should in principle

give us the values of the a priori unknown constants cij and the (real) terms corresponding to

the green dots. Alas, numerical experiments indicate the emergence of a cutoff term breaking
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P(1)(H) =
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P(2)(H) =
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4 3 2 1

P(3)(H) =

1 2 3

1 2

1

1

2 1

3 2 1

P(4)(H) =

1 2

1

1

2 1

P(5)(H) =

1

1

P(6)(H) =

Figure XVI: Ansatz for the pseudometrics for eq. 4.11 and n = 6. Green dots are real entries,

n ∈ N stands for c inω(ω − iρ)n−1 with c to be determined.

the ansatz already for n = 6. As an example, consider the metric Θ = P(1), which could be

inserted into fig. XVI to become

Θ =



1 − iω
1+λ

−ω(ω−iρ)
1−λ2

iω(ω−iρ)2

(1−λ2)(1+λ)
ω(ω−iρ)3

(1−λ2)2
Λ

iω
1+λ

1 − iω
1−λ −ω(ω−iρ)

1−λ2
iω(ω−iρ)2

(1−λ2)(1−λ)
ω(ω−iρ)3

(1−λ2)2

−ω(ω+iρ)
1−λ2

iω
1−λ 1 − iω

1+λ
−ω(ω−iρ)

1−λ2
iω(ω−iρ)2

(1−λ2)(1+λ)
−iω(ω+iρ)2

(1−λ2)(1+λ)
−ω(ω+iρ)

1−λ2
iω

1+λ
1 − iω

1−λ −ω(ω−iρ)
1−λ2

ω(ω+iρ)3

(1−λ2)2
−iω(ω+iρ)2

(1−λ2)(1−λ)
−ω(ω+iρ)

1−λ2
iω

1−λ 1 − iω
1+λ

Λ∗ ω(ω+iρ)3

(1−λ2)2
−iω(ω+iρ)2

(1−λ2)(1+λ)
−ω(ω+iρ)

1−λ2
iω

1+λ
1


(4.10)

The outermost terms are, however, incompatible with the remaining condition of quasi-hermicity,

and our natural-looking ansatz does not produce the desired results. This makes the analysis of

our model difficult in higher dimensions, and most likely crushes the hopes for constructing a

closed-form metric in its infinite-dimensional limit. While this is certainly an unpleasant feature,

it can be very curiously remedied with just a slight modification of the original Hamiltonian.

The modification, which draws its inspiration from [107], has the form

H(4) =


ρ+ iω −1− λ
−1 + λ −1 + λ

−1− λ −1− λ
−1 + λ ρ− iω

 (4.11)

For brevity, we shall refer to this modified Hamiltonian as the dual SSH model. The procedure

of constructing its pseudometrics is completely parallel to eq. 4.3. For γ = 0, the chessboard

pattern of eq. 4.9 may be reproduced in a slightly altered form, with the the odd pseudometrics

now having entries varying with λ, and even pseudometrics having entries constant throughout

the matrix. For ± = (1± λ), this reads
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P(1) =


+

−
+

−

 P(2) =


1

1 1

1 1

1

 P(3) =


+

− −
+ +

−

 P(4) =


1

1

1

1

 (4.12)

This pattern is again very simple and admits expressing the results comfortably for any n ∈ N.

In order to provide direct comparison with SSH model for γ = 0, we list the nonzero matrix

entries for both kinds of pseudometrics in tab. B.

SSH dual SSH

+ k even, i− j odd + k odd, i− j odd

− k even, i− j even − k odd, i− j even

1 k odd 1 k even

Table B: Values of P(k)
ij for eq. 4.1 and eq. 4.11.

The main result of the present section comes by applying the ansatz of eq. 4.10 on this operator.

Discouraged by the negative results for eq. 4.3, it is curious enough that for the dual SSH

model, the ansatz actually works flawlessly and provides a complete description of the physical

Hilbert spaces for the Hamiltonian under consideration (again, a direct proof of this assertion

could be in principle very complicated, but the evidence provided by symbolic manipulations is

overwhelming).

Moreover, the undetermined coefficients in the ansatz acquire surprisingly simple forms

(whose precise pattern, however, remains yet to isolate). Since the formulas are in general still

too complicated to be printed explicitly, we content ourselves with showing the equivalent of

eq. 4.10, which becomes

Θ =



1 + λ −iω −ω(ω−iρ)
1−λ

iω(ω−iρ)2

1−λ2
ω(ω−iρ)3

(1−λ)(1−λ2)
−iω(ω−iρ)4

(1−λ2)2

iω 1− λ −iω −ω(ω−iρ)
1+λ

iω(ω−iρ)2

1−λ2
ω(ω−iρ)3

(1+λ)(1−λ2)

−ω(ω+iρ)
1−λ iω 1 + λ −iω −ω(ω−iρ)

1−λ
iω(ω−iρ)2

1−λ2
−iω(ω+iρ)2

1−λ2 −ω(ω+iρ)
1+λ

iω 1− λ −iω −ω(ω−iρ)
1+λ

ω(ω+iρ)3

(1−λ)(1−λ2)
−iω(ω+iρ)2

1−λ2 −ω(ω+iρ)
1−λ iω 1 + λ −iω

iω(ω+iρ)4

(1−λ2)2
ω(ω+iρ)3

(1+λ)(1−λ2)
−iω(ω+iρ)2

1−λ2 −ω(ω+iρ)
1+λ

iω 1− λ


(4.13)

4.2 Imaginary local interactions

Zero-range interaction Hamiltonians are with no doubt the best understood class of quantum

operators, be it differential or discrete ones. While their differential realizations coincide with

the class of Schrödinger operators, their discrete counterparts are studied less systematically,

despite having well understood spectral properties [108, 53]. It comes as no surprise, that these

operators have already received substantial attention also in the context of finite-dimensional

quasi-hermitian theory [109, 110, 111].
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In the previous section, we examined the non-hermitian SSH Hamiltonian, and found the

results exceptionally accessible for λ = 0. This motivates a more general discussion with the

interaction terms no longer constrained to the boundaries of the system. We start with a

completely general Hamiltonian subject to imaginary zero-range interaction, the only constraint

being the condition of PT-symmetry (for simplicity, we also restrict attention to even space

dimensions). The resulting 2n-dimensional operator depends on n free parameters as

H(2n) =


iα −1

−1 iβ −1
. . .

−1 −iβ −1

−1 −iα

 (4.14)

with the parameters being denoted by Greek letters in alphabetical order. Although the quickly

rising number of parameters makes the model very complicated with growing dimension, the

reward may be seen in the vast diversity of its spectral properties. This is demonstrated even

in the next-to-trivial case n = 6. The graphical results are shown in fig. XV, where one of the

parameters is always set to zero in order to allow two-dimensional plotting.
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(b) β = 0

α
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-1.7
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(c) α = 0

β

γ

-1

1

-1.6 1.6

Figure XVII: Varying domains of observability for the n = 6 model with two nonzero parameters.

The rightmost plot is not cut off, but indeed an exact result.

The domains of observability form (asymmetric) regions around zero in the parametric space,

with their boundary consisting of so-called exceptional points (where the Hamiltonian, despite

having real spectrum, ceases to be diagonalizable). The asymmetry of these plots serves as an

inspiration to undertake a deeper numerical experiment with a single nonzero parameter. The

results are summarized in tab. C for 4 different parameters.

n = 10 n = 30 n = 50 n = 100

αcrit 1.0000 1.0000 1.0000 1.0000

βcrit 0.7129 0.7089 0.7082 0.7064

γcrit 0.5228 0.5085 0.5027 0.5015

δcrit 0.4535 0.3936 0.3913 0.3828

Table C: Exceptional points for eq. 4.14 in n dimensions with a single nonzero parameter.
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With exception of the boundary parameter α, all the domains exhibit a shrinking behavior for

growing n. Despite this fact, the shrinking rates fall down quickly, and one may conjecture that

each pcrit approaches a certain nonzero limit for n→∞. This raises the possibility of existence

of an appropriately defined infinite-dimensional limit, in complete analogy with eq. 4.4.

A related (and at this moment completely expected) question concerns another kind of

limiting behavior. Assume again a family of operators with a single nonzero parameter, this time

however having a fixed position with respect to the matrix center (instead of the boundary). As

an example, choose the innermost (central) element c. The first three terms of the corresponding

matrix family are then

H2 =

[
c −1

−1 c

]
H4 =


−1

−1 c −1

−1 c −1

−1

 H6 =



−1

−1 −1

−1 c −1

−1 c −1

−1 −1

−1


(4.15)

One obvious advantage of taking this limit is, that the appropriate discrete limiting operation

can be defined naturally as acting on `2(Z), whereas taking the limits in tab. C requires a more

refined treatment. A numerical experiment analogical to the table above shows the values of

exceptional points in tab. D

n = 10 n = 30 n = 50 n = 100

c 1.0000 1.0000 1.0000 1.0000

c-1 0.4546 0.3678 0.3415 0.3467

c-2 0.5229 0.2583 0.2157 0.2133

c-3 0.7115 0.2355 0.1575 0.1572

Table D: Exceptional points for eq. 4.15 in n dimensions with a single nonzero parameter.

Interestingly, the innermost coupling behaves completely in the same way as the outermost one

in tab. C.

4.2.1 The universal metric

Inspired by the success enjoyed by the dual SSH Hamiltonian, we explore the possibility of

constructing the universal metric for eq. 4.14 using once again the machinery of symbolic

manipulations. Since our general Hamiltonian may be understood, up to a constant, as a

perturbation of the discrete Laplacian

(∆n)ij = −δi,i+1 + 2δi,i − δi+1,i (4.16)

(which is simplest possible discrete analogue of the Laplace operator, arising by second order

finite difference discretization as in eq. 2.36) it may be fruitful to review the pseudometrics

available for this operator. Their form useful for our later purposes turns out to be
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P(1)(∆) =


1

1

1

1

 P(2)(∆) =


1

1 1

1 1

1

 P(3) =


1

1 1

1 1

1

 P(4) =


1

1

1

1

 (4.17)

Since ∆ is hermitian, the identity operator obviously belongs among admissible metrics, and

so does the discrete parity operator P(n). In sufficiently low dimensions, we can repeat this

brute-force symbolic manipulation recipe for the general multiparametric Hamiltonian from

eq. 4.14. In dimension four, this problem (depending on two parameters α, β) may be solved in

full generality to reveal a sequence

P(1)(H) =


1 iα −α(α + β) −i(α(α2 − β2)− β)

−iα 1 i (α + β) −α (α + β)

−α (α + β) −i (α + β) 1 iα

i(α(α2 − β2)− β) −α(α + β) −iα 1



P(2)(H) =


1 i(α + β) β2 − α2

1 1 i(α + β)

−i(α + β) 1 1

β2 − α2 −i(α + β) 1



P(3)(H) =


1 iα

1 iβ 1

1 −iβ 1

−iα 1

 P(4)(H) =


1

1

1

1



(4.18)

For large n, the general matrix elements are too complicated to be written explicitly. However,

eq. 4.18 enables us to formulate a useful and simple ansatz, which may be expressed in a unified

form for any dimension. The k-th matrix elements should again occupy just n+ 1− k of its

antidiagonals. The explicit dependence of the remaining elements is not specified, they are

however required to be either purely real or purely imaginary, depending on their position (as

expressed in fig. XVIII for n = 6)

When analyzing any model belonging to eq. 4.14, this ansatz may be readily applied to

greatly reduce the arbitrariness of the undetermined metric. In particular, these considerations

may be extended from the boundary interaction in eq. 4.3 to arbitrary single nonzero parameter,

as demonstrated by examining the result for β
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Figure XVIII: A general ansatz for the pseudometrics of eq. 4.14 for any parameter values,

depicted for n = 6. Red dots stand for imaginary entries, green dots for real entries, ones for

the actual value 1.

P 1
4 (Hβ) =


1 iβ

1 iβ

−iβ 1

−iβ 1

 P 2
4 (Hβ) =


1 iβ −(iβ)2

1 1 iβ

−iβ 1 1

−(iβ)2 −iβ 1



P 3
4 (Hβ) =


1

1 iβ 1

1 −iβ 1

1

 P 4
4 (Hβ) =


1

1

1

1


(4.19)

which in principle admits, due to its simplicity, the possibility of large-dimensional analytic

discussion completely analogous to eq. 4.13. Although we do not pursue the general case here,

the message is clear: in order to obtain closed-form pseudometrics, the interaction does not

need to be constrained to the boundary.

The core of our present discussion lies in the introduction of yet another model, which

remains apparently unnoticed in the literature. This model is notable for exhibiting a full-lattice

interaction, meaning that all the parameters in eq. 4.14 are nonzero. It can be seen already

from the n = 4 formulas, that maximum simplicity is achieved by choosing the parameters in

an alternating fashion

α = −β = γ = −δ = . . . (4.20)

A Hamiltonian with this precise choice of parameters shall be denoted Ha. The exceptional

nature of this model indeed manifests itself when computing the pseudometric explicitly (using

the provided ansatz in a convenient manner). The results of these computations are summarized

in fig. XIX
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P(1)(Ha) =
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1
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Figure XIX: Matrix entries for n = 6 Hamiltonian of eq. 4.20, red dots standing for ±iα.

The exceptionally friendly character of our interaction may be seen in the complete triviality of

the even-numbered pseudometrics in each sequence, and also in the occurrence of just a single

nontrivial matrix element iα. Consequently, we may drop two-color notation from above, and

denote this nontrivial element by a simple red dot.

We have reached the goal we were looking for: a successful construction of the pseudometrics

for a special case of eq. 4.18, which surpasses the previously examined toy models (e.g. [112])

both in sparsity and simplicity of the resulting pseudometric elements. Our choice of Hamiltonian

stems from the attempt to provide a general treatment to various finite-dimensional operators

with complex interactions scattered in the literature. To this end, we complement the numerical

experiment of previous section by its counterpart for full-lattice interactions.

n = 10 n = 30 n = 50 n = 100

α = −β = γ = −δ = . . . 0.2934 0.1015 0.0623 0.0316

α = β = γ = δ = . . . 0.1413 0.0185 0.0073 0.0018

Table E: Critical values (exceptional points) for 2 different full-lattice Hamiltonians of varying

dimension n.

The domains of observability are in orders of magnitude smaller that for single-site interactions,

and have a clearly defined zero limit as n → ∞. While these results complement nicely the

single-site interactions discussed earlier, many problems in this direction remain unresolved. In

this direction, it may be worth studying either general complex zero-range interactions (instead

of purely complex ones), or switching attention to finite-range interactions, which would however

most likely produce a number of new obstacles to overcome. The latter subject is so important,

that we close this chapter with a short example of a model from finite-range class.
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4.3 Beyond zero-range models

Even though zero-range Hamiltonians constitute a major portion of quantum-mechanical models,

one is often forced to allow interactions of longer range in order to describe interesting physical

phenomena. One such phenomenon is the Fano resonance [113], a type of resonance manifested

by an asymmetric resonance line-shape. The general mechanism behind such resonance is the

interference between two scattering processes, one in the continuous spectrum and the other

being an excitation of a discrete state.

One of the simplest Hamiltonians exhibiting the Fano resonance is the lattice Fano-Anderson

model [114, 115]. The underlying lattice can be taken as one-dimensional and doubly infinite. In

other words, the Hamiltonian shall be assumed to act on the space `2(Z). It may be expressed

in the second-quantized form as

H = −
∑

n∈Z\{1}

a†n−1an + g
{
d†1a0 + d†2a0 + d†1a1 + d†2a1

}
+ h.c. (4.21)

The sites d1 and d2 describe alternative channels for propagation of particles through the origin.

These channels are coupled to the non-interacting Hamiltonian through the control parameter g,

which shall be assumed to remain sufficiently small. A schematic picture of the Fano-Anderson

model near the origin is depicted in fig. XX

n

d1

d2

a1a0 a2a−1 a3a−2 a4

Figure XX: Scheme of the Fano-Anderson Hamiltonian from eq. 4.21.

In the following, we shall restrict attention to finite truncations of this Hamiltonian. While the

truncated model can be no longer used to describe resonances and scattering phenomena, it is

still suitable for description of certain physical scenarios. One example is a discrete quantum

graph, modeling a (finite) network made from ultra-thin materials [116]. This approach was

taken also in [111, 117], with results very similar to the truncated Fano-Anderson model.

In [118], a PT-symmetrization of the Fano-Anderson system was suggested, with a gain-loss

term localized in the center of the lattice, HI = iγd†1d1 − iγd†2d2. Note that although the

Fano-Anderson Hamiltonian is not tridiagonal, it is still a quadratic system and might be again

represented in terms of n× n matrices instead of the usual Fock matrices of dimension 2n × 2n.

The resulting Hamiltonian and a starting point of our considerations is
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H =



−1

−1 −g −g
−g iγ −g
−g −iγ −g
−g −g −1

−1


(4.22)

We wish to extend the method of pseudometric construction to the Fano-Anderson model.

Since this means leaving the realm of tridiagonal models, the results can be expected to be

considerably more involved. We illustrate all results for n = 6. For further discussion, it is

helpful to divide the pseudometrics into three categories.

The first category contains (n− 1)/2 pseudometrics independent on both g and γ, which

demonstrate the trivial behavior of the Hamiltonian outside the bubble neighborhood of the

origin. These metrics contain nonzero entries solely in their (n− 1)/2× (n− 1)/2 corner blocks,

in our case

P(1) =



1 −1

1 −1

−1 1

−1 1


P(2) =



1 −1

1 −1

−1 1

−1 1


(4.23)

These solutions can be naturally extended to larger dimensions. In general, they correspond

to the chessboard solution of a free Laplacian on (n − 1)/2 sites, completely analogous to

eq. 4.17. In addition to this rather trivial family, we might construct a second (this time highly

nontrivial) class of (n − 1)/2 pseudometrics. The matrices of this family depend on both g

and γ explicitly, with their form being to some extent compatible with the bubble shape of the

original Hamiltonian. Explicitly for n = 6, we have

P(3) =



1 1

1 2g 2g 1

2g −2iγ 2g

2g 2iγ 2g

1 2g 2g 1

1 1


P(4) =



1− 4g2 2g 2 g 1− 4g2

1 2iγg −2iγg 1

2g −2iγg −2γ2 −2iγg 2g

2g 2iγg −2γ2 2iγg 2g

1 2iγg −2iγg 1

1− 4g2 2g 2g 1− 4g2


(4.24)

The search is however not yet complete, it remains to reveal the form of two pseudometrics in

order to get a complete family. One of them, as may be expected for a PT-symmetric system, is

again the discrete operator of parity P(5). Note that of the five constructed pseudometrics, none

are strictly positive. For γ = 0, the desired remaining (and positive) metric would be obviously

the identity. The form of its γ 6= 0 counterpart, does not allow to isolate any reasonable

extrapolating pattern, at least to our best knowledge. This may be seen as a first demonstration

of the nontrivial nature of finite-range models, but at the same time as an open and physically

highly relevant problem, encouraging further research in this direction.
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Epilogue

It is not uncommon in physics for some important concepts or ideas to be initially neglected and

eventually vanish into obscurity, only to be rediscovered many years later. A perfect example of

this phenomenon is the very core of this thesis: quantum theory with non-hermitian observables.

The possibility of using non-hermitian observables was pondered virtually since the first days of

quantum mechanics by von Neumann [119] and Krein [120], and enjoyed a short rennaissance

almost a generation later in the works of Dyson [121] and Dieudonné [122], to provide a small

sample. Now, since nearly twenty years have passed since its last rediscovery in 1998, the theory

seems to be firmly established in the physical literature.

Over the past years, the focus of researchers has gradually shifted from conceptual problems

to applications of the theory. Probably the most successful of these applications, which is

currently being unrivaled in terms of citations and press coverage, examines quasi-hermitian

operators in classical optical systems [123, 124, 125, 126]. This is motivated by a formal

similarity between the Schrödinger equation and some optical evolution equations, e.g. the

Maxwell equations in paraxial approximation. As opposed to quantum physics, where quasi-

hermitian theory provides a mere new mathematical formalism, the effects of non-hermicity are

directly observable in optical systems. Among the newly observed phenomena, one of the most

fascinating is definitely the recent possible realization of invisible metamaterials [127, 63].

In every physical theory, there is a strong need to establish at least a few exactly solvable

models, which can be used as a reference point to further numerical or perturbative treatment.

In comparison with ordinary quantum mechanics, quasi-hermitian theory is currently in statu

nascendi in terms of availability and applicability of such models. The present thesis intends

to help with filling the gaps in this direction. Its core lies in a thorough examination of a

certain general class of finite-dimensional models and introduction of non-numerical construction

patterns for the corresponding metrics.

Still, the thesis leaves unexplored many problems asking for further examination. The

proper infinite-dimensional limits of discrete models in the spirit of eq. 4.3 and eq. 4.14 could

probably be established for more general class of Hamiltonians. This could in principle lead

to a substantial enlargement of the class of currently known solvable Hamiltonians. The

same reasoning can be applied to the technique of PT-symmetrizing known solvable hermitian

Schrödinger operators, which has produced successful results for the square well potential [93,

128] as well as for the Coulomb Hamiltonian [89, 90]. Applying this technique to the whole class

of Natanzon potentials, in the spirit of the works of Levai [129, 130, 131], could be strongly

conjectured to produce some intriguing results.
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[47] J. Smejkal, V. Jakubský, and M. Znojil. “Relativistic vector bosons and PT-symmetry”.

Journal of Physical Studies 11 (2007), pp. 45–54.

[48] M. Znojil. “New concept of solvability in quantum mechanics”. Acta Polytechnica 53

(2013), pp. 473–482.

[49] G. A. Natanzon. “General properties of potentials for which the Schrödinger equation

can be solved by means of hypergeometric functions”. Theor. Math. Phys. 38 (1979),

pp. 146–153.

[50] G. Levai. “A search for shape-invariant solvable potentials”. J. Phys. A 22 (1989), p. 689.

[51] A. M. Ishkhanyan. “Schrödinger potentials solvable in terms of the general Heun func-

tions”. ArXiv e-prints (2016).

[52] D. Batic, D. Mills-Howell, and M. Nowakowski. “Potentials of the Heun class: The

triconfluent case”. J. Math. Phys. 56 (2015), p. 052106.

[53] A. Bottcher and B. Silbermann. Analysis of Toeplitz operators. Springer, 2006.

[54] K. Schmündgen. Unbounded self-adjoint operators on Hilbert space. Springer, 2012.

[55] D. Farenick et al. “Normal Toeplitz matrices”. SIAM J. Matrix Anal. Appl. 17 (1996),

pp. 1037–1043.

63



[56] L. Trefethen and M. Embree. Spectra and pseudospectra - the behavior of nonnormal

matrices. Princeton University Press, 2005.

[57] P. Markowich and P. Szmolyan. “A system of convection-diffusion equations with small

diffusion coefficient arising in semiconductor physics”. J. Diff. Eq. 81 (1989), pp. 234

–254.

[58] E. Witten. “Supersymmetry and Morse theory”. J. Diff. Geom. 17 (1982), pp. 661–692.

[59] J. Wess and J. Bagger. Supersymmetry and supergravity. Princeton University Press,

1992.

[60] F. Cooper, A. Khare, and U. Sukhatme. “Supersymmetry and quantum mechanics”.

Phys. Rept. 251 (1995), pp. 267–385.

[61] B. Bagchi. Supersymmetry in quantum and classical mechanics. Chapman & Hall, 2000.

[62] L. Infeld and T. E. Hull. “The factorization method”. Rev. Mod. Phys. 23 (1951), pp. 21–

68.

[63] Z. Lin et al. “Unidirectional invisibility induced by PT-symmetric periodic structures”.

Phys. Rev. Lett. 106 (2011), p. 213901.

[64] T. Kato. Perturbation theory for linear operators. Springer, 1995.
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[89] M. Znojil, P. Siegl, and G. Lévai. “Asymptotically vanishing PT-symmetric potentials

and negative-mass Schrödinger equations”. Phys. Lett. A 373 (2009), pp. 1921–1924.

[90] G. Lévai, P. Siegl, and M. Znojil. “Scattering in the PT-symmetric Coulomb potential”.

J. Phys. A 42 (2009), p. 295201.
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