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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Abstrakt: Prozkoumáme se konceptem skryté hermitovosti, způsobem reprezentace kvantových pozorovatel-
ných pomocí nesamosdružených operátorů. Zavedeme několik modelů majících vlastnost skryté hermi-
tovosti, přičemž důraz bude kladen na přesnou řešitelnost a uplatnění v kvantové teorii katastrof. Zobec-
níme některé diferenciální operátory z jednoduchého intervalu na obecný kvantový graf a vyšetříme důsled-
ky tohoto zobecnění. Spektrální vlastnosti všech zmíněných operatátorů budeme ilustrovat graficky pomocí
pseudospekter.
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Abstract: We deal with the concept of crypto-self-adjointness, a way of representing quantum observables by
non-self-adjoint operators. We examine a number of crypto-self-adjoint models of discrete and differential
nature with emplasis on their exact solvability and application in the field of quantum catastrophes. We
extend several differential models from a real interval to quantum graphs and examine the consequences. We
illustrate properties of such models with the help of pseudospectra.
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List of symbols

H ... separable Hilbert space

L (H) ... set of linear operators onH

C (H) ... set of closed operators onH

B (H) ... algebra of bounded operators onH

H ... linear operator

D(H) ... domain of H

Dmax ... maximal domain of H

σ(H) ... spectrum of H

σε(H) ... ε-pseudospectrum of H

Θ ... metric operator

Ω ... bounded similarity operator

Wk,l ... Sobolev space

∆ ... Laplacian

Dobs(H) ... domain of observability of H(λ)

|ψ〉 ... Dirac ket

〈ψ| ... Dirac bra

〈〈ψ| ... modified bra 〈ψ|Θ

T ... unit circle

Tn ... set of n-th roots of unity

↔ ... Wigner-Weyl correspondence

? ... phase-space star product

G ... quantum graph

E(G) ... set of edges of G

V(G) ... set of vertices of G

W ... positive-definite matrix

P ... operator of parity

T ... operator of time-reversal

C ... operator of charge
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Prologue

The theory of self-adjoint operators on Hilbert spaces forms one of the central parts of mathematical physics
[1, 2]. Motivated, above all, by ubiquitous presence of such operators in quantum physics [3], there exists vast
literature on the topic, which may be perceived as well-understood.

The theory of non-self-adjoint (more generally non-normal) operators [4, 5] is much less developed. At-
tempts to carry over techniques from self-adjoint theory have limited success, although numerical experiments
indicate the occurrence many new and unexpected phenomena [6]. A thorough understanding of non-self-
adjoint operators is highly desirable, as they have a great importance in almost every area of physics: they are
generally used to describe phenomena involving non-conservation of energy, like friction or drag forces. For a
non-exhaustive list of examples, consider the Fokker-Planck equation in statistical physics [7], Black–Scholes
equation in financial mathematics [8], Navier-Stokes equations in fluid dynamics [9], or nonlinear Schrödinger
equation in optics [10]. In quantum mechanics, non-self-adjoint operators usually describe open quantum sys-
tems [11] or resonant phenomena [12].

Yet another promising application of non-self-adjoint operators emerged around 1992 in nuclear physics
[13], where complicated bosonic operators were shown to admit a much simpler representation in terms of
non-self-adjoint partners with identical spectral properties. Such operators were initially given the name
quasi-hermitian: in the present work, they are called crypto-self-adjoint, following the terminology of [14]. This
framework was later rediscovered in 1998 [15], when certain non-self-adjoint operators were shown to pos-
sess purely real spectrum, which was attributed to the PT -symmetry of such operators [16]. The success of
PT -symmetric quantum mechanics led to a rapid progress in the field and may now be perceived as well-
understood. This serves as a main motivation for the current task to use the crypto-self-adjoint framework in
the case of quantum graphs.

Quantum graph theory is a well-established field of physics [17], which has its roots in direct phenomenol-
ogy: quantum graphs are used to model atomic bonds in quantum chemistry [18], waveguides in quantum
computing [19], carbon nanotubes in the study of graphene [20] or photonic crystals [21] in optics. They
found applications also in the study of quantum chaos [22], scattering theory [23], theory of dynamical sys-
tems [24], the Hall effect [25] or Anderson localization [26]. Recent attempts to study quantum graph models
in the crypto-self-adjoint framework include [27] and [28], which are also among the main inspirations for the
present work.

This thesis aims to provide a compact review of the current state of art of regarding crypto-self-adjoint
models and their applications. Moreover, it attempts to generalize some of the known differential models
by promoting them from real line to a general quantum graph. It is divided into four chapters: chapter
1 motivates the study of non-self-adjoint operators in physics with the help of illustrative examples, and
introduces the central concept of crypto-self-adjointness. Chapters 2 to 4 deal respectively with a number of
discrete/differential/graph models. Necessary theoretical concepts needed to study the models are presented
at the beginning of each chapter. Problems of mathematical nature are finally elaborated in the appendices.



Chapter 1

Non-self-adjoint operators

1.1 Physics of non-self-adjoint operators

Much of the success of spectral theory in analysis of self-adjoint (more generally normal) operators may be at-
tributed to the spectral theorem [3], which establishes equivalence between normal and unitarily diagonalizable
operators. More precisely, for any H ∈ C (H) normal, there exists an unitary map U : H → L2(R), f ∈ L2(R),
such that

[UHU†ψ](x) = f (x)ψ(x) ∀ψ ∈ L2(R) (1.1)

This means that up to an unitary transformation, the knowledge of spectrum of a normal operator is equivalent
to the knowledge of the operator itself. This is not the case for non-normal operators.

In this introductory section, we aim to show that the predictions based on the spectrum itself may turn out
to be misleading or plainly wrong, when dealing with non-normal operators. Generally, we shall be dealing
with first order equations of the form ẋ = Hx or iẋ = Hx, leading to the study of semigroups exp(tH)
or exp(itH). While the spectrum can be employed to understand behavior of these semigroups as t → ∞,
their behavior over the entire range of t is controlled by the resolvent norm of H [29]. In the case of non-
normal operators, this can be a wildly behaving quantity (2.2). To illustrate such phenomena, we consider two
examples from various fields of classical physics.

Example (Orr-Sommerfeld operator) [6]

Figure I: Laminar flow in an infinite tube

One of the most famous phenomena showing manifest non-normality is turbulence in fluid mechanics. Con-
sider a fluid described by incompressible Navier-Stokes equations [9] in an infinitely long 2D tube of fig. I. We
know that in the 2D case, the Navies-Stokes equations admit smooth solution for any boundary conditions.
However, the stability of such a solution is much more delicate issue. We make the ansatz

ψ(x, y, t) = u(x, t) exp(iαy) α > 0 u(±1) = ux(±1) = 0 (1.2)

and insert it into the Navier-Stokes equations. This results into a single equation ẋ = Hx with

H = iα
(

d2

dx2 − α2
)−1 [ 1

iαR

(
d2

dx2 − α2
)2

− (1− x2)

(
d2

dx2 − α2
)
− 2

]
(1.3)

with R being the Rayleigh quotient. This non-normal operator is called Orr-Sommerfeld operator. It can be
shown, for R small enough, to possess discrete spectrum contained in the left half of the complex plane [30],
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which means the corresponding solution decays do zero as t → ∞. In fig. II one can see the eigenvalues and
pseudospectra of (1.3): in all pseudospectral plots, the axes denote the real and imaginary parts of λ. Strong
penetration of pseudospectra (2.1) into the right half-plane indicates the presence of a big jump of ‖ exp(tH)‖
before decaying to zero, which is indeed related to the presence of turbulence.
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Figure II: Pseudospectra (2.1) of the Orr-Sommerfeld operator

Example (Optical resonators) [6]

Another problem of non-normal nature is ubiquitous in the theory of lasers. A laser beam building setup
usually consists of two mirrors placed around the gain medium that form a standing wave cavity resonator
for light waves. This problem is inherently non-normal since the mirror at one end of the cavity must reflect
imperfectly, so that some light can escape from the cavity.

Figure III: Laser beam generating setup

The dynamics is governed by free-field Maxwell equations, which can be equivalently expressed as the electric
field wave equation Exx + Eyy + k2E = 0. The ansatz of solution propagating in the y-direction,E(x, y) =
exp(−iky)u(x, y), leads to a reduced equation uxx + uyy − 2ikuy = 0. We use standart paraxial approximation
and assume uyy � 1, which reduces the equation to

uy = − i
2k

uxx (1.4)

The solutions of this equation are not in L2 (R) and have to be regularized using Fourier transform. This
results in

u(x, y) = Hu0(x, 0) =

√
ik

2πy

∫
R

exp
(
− ik(x− t)2

2y

)
u(t, 0)dt (1.5)

with H being a normal (unitary) integral operator. Let’s now truncate this general unitary operator to the
setting of fig. III. A two-dimensional cavity of length L is open at sides and bounded at the ends with two
mirrors, located as x = ±1. Consequently, (1.5) reduces to a non-normal operator

u(x) = Hu0(x) =

√
ik

2πL

∫ 1

−1
exp

(
− ik(x− t)2

2L

)
u0(t)dt (1.6)

with the graphical analysis again using pseudospectra (2.1) shown in fig. IV.
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Figure IV: Pseudospectra of the of integral operator (1.6)

1.2 The concept of crypto-self-adjointness

Following the ideas of [13], let us elaborate on the possiblity of actual quantum observables being represented
by non-self-adjoint operators. Consider a quantum system described by a Hilbert space H and a set of ob-
servables H ∈ C (H). Then the observables are required to be self-adjoint by standard postulates of quantum
mechanics. Their spectrum has to be real, because it corresponds to physically measurable quantities. Their
eigenvectors have to form an orthonormal basis ofH, which follows from the projection postulate. Any oper-
ator having such properties is necessarily self-adjoint inH. For operators with D(H) = D(H†), we may write,
using Dirac bra-ket notation

H† = ∑
n
|ψn〉〈ψn|H† = ∑

n
λ∗n|ψn〉〈ψn| = ∑

n
λn|ψn〉〈ψn| = H ∑

n
|ψn〉〈ψn| = H (1.7)

Note, however, that our choice of the representation of the physical Hilbert space, which we shall denoteH(F),
is specified by formal rather than physical considerations. Although the action of a given observable H fixes
the vector space, there is still freedom in choice of inner product. Some operators non-self-adjoint on H(F)

may become self-adjoint, and thus eligible as quantum observables, merely by changing the Hilbert space
from H(F) to H(S), which differs in the choice of inner product. We may express the inner products in terms
of metric operators Θ as

〈φ|ψ〉Θ = 〈φ|Θ|ψ〉 (1.8)

The self-adjointness of quantum observable H ∈ C (H) inH(S) can be expressed as

〈φ|ΘHψ〉 = 〈φ|Hψ〉Θ = 〈Hφ|ψ〉Θ = 〈Hφ|Θψ〉 = 〈φ|H†Θψ〉 (1.9)

Operators having such property shall be called crypto-self-adjoint. Equation (1.9) may be rewritten as

H†Θ = ΘH (1.10)

and shall be referred to as Dieudonné equation [31].

Hilbert space ket bra inner product

H(F) (unphysical) |ψ〉 〈ψ| 〈ψ|ψ〉
H(S) (physical) |ψ〉 〈〈ψ| = 〈ψ|Θ 〈〈ψ|ψ〉 = 〈ψ|Θ|ψ〉
H(T) (physical) Ω|ψ〉 〈ψ|Ω† 〈ψ|Ω†Ω|ψ〉 = 〈ψ|Θ|ψ〉

Table I: Three Hilbert spaces used in crypto-self-adjoint framework [32]

Solving the Dieudonné equation for a variety of models is the central part of this work. If H is self-adjoint
in the classical sense, then Θ = I is a solution of (1.10). Moreover, it we assume Θ to admit a decomposition
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Θ = Ω†Ω with Ω invertible, we can show H to be similar to a self-adjoint operator h as

h = ΩHΩ−1 =
(

ΩHΩ−1
)†

= h† (1.11)

It is clear that H and h are isospectral as long as Ω is bounded. For such Ω, it follows that Θ is also bound-
ed and boundedly invertible. We therefore restrict attention to metric operators satisfying the conditions of
boundedness and bounded invertibility. In the language of spectral theorem (1.1), we have broadened the
class of operators with real spectrum eligible as quantum observables from unitarily diagonalizable to bound-
edly diagonalizable ones, or from those with orthonormal basis of eigenvectors to those with Riesz basis of
eigenvectors (B.2). The operator h acts in yet another Hilbert space representation, which shall be denoted
H(T), and may be assumed complicated.

Whenever we know Ω explicitly, there is no reason to work with H, as we can just as well work with its
self-adjoint partner (1.11). However, as pointed out in [13], h may be in general a very complicated operator,
whereas H would have a simple solvable form. This makes crypto-self-adjoint framework a great model-
building scheme, in which one starts with a simple non-self-adjoint operator with real spectrum, and then
examines its possible similarity to a much more complicated self-adjoint observable.

Example

For a simple illustrative example, consider H(F) = R2 with standard inner product and standard basis, and
the operator H acting as

H =

[
1 1
0 2

]
(1.12)

This matrix, despite being non-hermitian, is diagonalizable with real spectrum. By (B.2), this suffices to estab-
lish the crypto-self-adjointness of H. Nevertheless, we shall construct the operators Θ and Ω explicitly. The
Dieudonné equation (1.10) has the form [

1 0
1 2

]
Θ = Θ

[
1 1
0 2

]
(1.13)

and its solution can be written explicitly in a two-parametric form

Θ =

[
a −a
−a b

]
b > a > 0 (1.14)

Yet another way to calculate Θ is to compute the eigenkets of H and insert them in the spectral resolution
series (??). This yields the expression

Θ =
2

∑
n=1
|φn〉〈φn| = a

[
−1

1

] [
−1 1

]
+ b

[
0
1

] [
0 1

]
=

[
a −a
−a a + b

]
a, b > 0 (1.15)

which indeed agrees with (1.13). We proceed to compute the operator Ω = Θ1/2. We choose Ω to be a map-
ping R2 → R2 for simplicity. One of its solutions is

Θ = Ω†Ω =

[√
a(1− a/b) −a/

√
b

0
√

b

] [ √
a(1− a/b) 0
−a/
√

b
√

b

]
(1.16)

and the self-adjoint partner h of H is given by

ΩHΩ−1 =

[
1/
√

a(1− a/b) 1/
√

b(1− a/b)
0 1/

√
b

] [
1 1
0 2

] [√
a(1− a/b) −a/

√
b

0
√

b

]
=

[
1 0
0 2

]
(1.17)

and we see that the off-diagonal element can be indeed transformed away by a similarity transform. The
properties of the respective spaces are summarized in table II.
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Hilbert space vector space inner product basis

H(F) C2 [
φ1 φ2

] [ψ1
ψ2

]
(

[
1
0

]
,
[

0
1

]
)

H(S) C2 [
φ1 φ2

] [ a −a
−a b

] [
ψ1
ψ2

]
(

[
1
0

]
,
[

0
1

]
)

H(T) C2 [
φ1 φ2

] [ψ1
ψ2

]
(Ω

[
1
0

]
, Ω

[
0
1

]
)

Table II: Three-Hilbert-space framework apllied to the model (1.12)

1.3 Crypto-self-adjointness and quantum catastrophes

Studying crypto-self-adjoint operators inH(F) does, in addition to a simplification of mathematics, lead to yet
another interesting phenomena. One such phenomenon emerges when we let H to depend on (one or more)
parameters λ. We assume that the dependence on λ is analytic and that H(λ) is crypto-self-adjoint for at least
one λ ∈ R and denote

Dobs(H) = { λ ∈ R
∣∣ H(λ) is crypto-self-adjoint } (1.18)

The analytic dependence on λ results in the fact, that (1.10) holds for any λ ∈ R, although the positivity of
Θ may not be satisfied. In the light of (C), this shows that the spectrum of H(λ) outside Dobs(H) remains
invariant with respect to complex conjugation. Therefore, complexification of spectrum is anticipated by pair-
wise coalescence of λ ∈ σ(H). Moreover, from (C) follows also, that even the eigenvectors merge at Dobs(H),
making the operator nondiagonalizable at the boundary of observability.

Such points are classic examples of exceptional points, introduced by Kato in the context of perturbation
theory [4], whose physical importance has been emphasized in ionised state physics [33], resonance phenom-
ena [34], chirality [35] or microwave cavities [36]. We see that in crypto-self-adjoint quantum mechanics,
exceptional points describe loss of observability of H(λ) inH(F). Note that exceptional points may occur also
in the case of self-adjoint operators for (unphysical) complex parameter values, which is usually manifested
by a phenomenon of avoided crossings, see fig. V. As illustrative example, consider a simple hermitian and
crypto-hermitian matrices

H =

[
1 λ
λ −1

]
|ψ〉 =

[
λ/(
√

1− λ2 − 1)
1

]
,
[
−λ/(

√
1− λ2 + 1)

1

]
λEP = ±i

H =

[
1 λ
−λ −1

]
|ψ〉 =

[
λ/(
√

1− λ2 − 1)
1

]
,
[
−λ/(

√
1− λ2 + 1)

1

]
λEP = ±1

(1.19)

The phenonenon of observability loss at certain λ ∈ R shall be called quantum catastrophe [37]. This name is not
accidental, as it describes phenomena of great qualitative changes caused by small perturbations in operator
theory, just as classical theory of catastrophes [38] does it in function theory.

Figure V: Generic behavior of eigenvalues, self-adjoint and crypto-self-adjoint case
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Example [39]

Consider a harmonic oscillator on L2 (R), regularized in the sense that x → x− ic, resulting in

H = − d2

dx2 + x2 − 2icx +
α2 − 1/4
(x− ic)2 D(H) = Dmax (1.20)

the spectrum of such operator is remains purely discrete and available in explicit form as

En± = 4n + 2± 2α + c2 (1.21)

which is manifestly real, degenerate for α ∈ Z and nondegenerate otherwise. It has been proven in [39] that
the operator is indeed nondiagonalizable α ∈ Z, thus having genuine exceptional points at these parameter
values.



Chapter 2

Discrete models

2.1 Theoretical aspects

2.1.1 Pseudospectrum

The concept of ε-pseudospectum of a non-normal operator [6] is an invaluable tool for both analytical and
numerical study of non-normal operators, which has been proven already in fig. II and fig. IV. It is defined as
a simple generalization of spectrum through analytical properties of resolvent function:

σε(H) =
{

λ ∈ C
∣∣‖(H− λ)−1‖ ≥ ε−1

}
(2.1)

To understand the behavior of resolvent, we remind a classic inequality [4], valid for any H ∈ C (H)

1
ρ [λ, σ(H)]

≤ ‖(H− λ)−1‖ (2.2)

with ρ(x, y) denoting the Euclidean metric. This inequality implies that the ε-neighborhood of spectrum is
always the subset of ε-pseudospectrum. Moreover, a direct consequence of the spectral theorem (1.1) is the
reverse inequality [6], making behavior of ε-pseudospectra trivial in the case of normal operators. When ex-
amining crypto-self-adjoint operators inH(F), we can apply this result to its self-adjoint partner h = ΩHΩ−1

to show, that the resolvent of H satisfies the inequalities

1
ρ [λ, σ(H)]

≤ ‖(H− λ)−1‖ ≤ ‖Ω‖‖Ω
−1‖

ρ [λ, σ(H)]
(2.3)

We can conclude that for a crypto-self-adjoint H with bounded but highly non-unitary Ω, the pseudospectrum
can form very non-trivial patterns, similar to those of fig. II and fig. IV.

Example (pseudospectra of Toeplitz matrices)

Pseudospectra of non-normal operators often reveal patterns invisible from the spectrum itself. This is illus-
trated in case of Toeplitz matrices [40], matrices constant along diagonals. A special case of a Toeplitz matrix is
a circulant matrix with ak−n = ak. Every circulant matrix is normal, while most Toeplitz non-circulant matrices
are not [41].

H(T)
n =



a0 a1 . . . an−1

a−1 a0
...

. . . . . . . . .
... a0 a1

a1−n . . . a−1 a0


H(c)

n =



a0 a1 . . . an−1

an−1 a0
...

. . . . . . . . .
... a0 a−1

a1 . . . an−1 a0


(2.4)
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(a) Circulant matrix (b) Toeplitz matrix
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(c) Laurent operator (d) Toeplitz operator

Figure VI: Spectra of operator associated with (2.6), n = 150 for matrices

We shall be interested also in infinite-dimensional analogues of Toeplitz and circulant matrices. They are
called, respectively, Toeplitz operators and Laurent operators. Here we restrict attention to bounded operators of
such kind, which enables us to define a meromorphic complex function

f (z) = ∑ akzk (2.5)

For f (z) having no singularities on the unit circle, the spectra of general Toeplitz operators, as well as those of
circulant matrices, admit a simple characterization in terms of f (z) [6]. Let T denote the unit circle and Tn the
set of n-th roots of unity.

• For a circulant matrix Hn, we have σ(Hn) = f (Tn).

• For a Laurent opeator H , we have σ(H) = f (T).

• For a Toeplitz operator H, we have σ(H) = f (T) together with its interior.

To illustrate the statements of this theorem, fig. VI shows the spectra of all considered operators associated
with the symbol

f (z) =
i

2z3 −
5
z2 +

6
z
− 3z2 − 8iz3 (2.6)

As a direct corollary of the above statements, the `2-convergence of a sequence of circulant matrices implies
the convergence of spectra (in the Hausdorff metric). From fig. VI, it is also obvious that it does not hold
for a convergent sequence of general Toeplitz matrices. In this case, the look at the pseudospectra of such a
sequence proves very illuminating, as illustrated in fig. VII. The figures suggest the result that can be indeed
proven rigorously [42] about the convergence of ε-pseudospectra:

‖Hn −H‖`2 → 0 =⇒ σε(Hn)→ σε(H) (2.7)

2.2 Models

We present a number of discrete crypto-self-adjoint models, which appear naturally in the study of spin or the
Klein-Gordon (3.12) and Proca [43] equations. Another motivation shall be seen in the final chapter, where the
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Figure VII: Pseudospectra of the Toeplitz matrix associated with (2.6)

Laplacian ∆ on quantum graph G shows to be of to an extent reducible to the matrix of its boundary conditions
(4.4). Our principal motivation for studying such systems originates from the concept of quantum catastrophes
(1.18), which proves much more feasible in the matrix framework. Finite-dimensional quantum-catastrophes
are even already classified [44] in parallel to the classification of elementary catastrophes in classical theory
[38].

2.2.1 I: Discrete anharmonic oscillator

This model, studied in [45], can be regarded as an equidistant Runge-Kutta [46] discretization of the imaginary
anharmonic oscillator [15]

H = − d2

dx2 + x2(ix)ε D(H) = Dmax (2.8)

This oscillator can be shown to possess a real spectrum [47], but the fact that all of its metric operators are
inherently unbounded or singular [48], makes it fall out of the scope of the present work. On the other hand,
its discretized counterpart admits genuine quantum-mechanical interpretation. It is sampled for dimension 6
as

H6 =



γi 1
1 βi 1

1 αi 1
1 −αi 1

1 −βi 1
1 −γi

 (2.9)

Quantum catastrophes motivate the study of exceptional points occuring generically at Dobs (C). In general,
this procedure involves calculating all eigenvalues of H and finding the domain of their simultaneous posi-
tivity. We use, however, a simpler method method of calculating Dobs for low matrix dimensions 2n without
need to explicitly calculate the eigenvalues [49]. The secular equation of a general 2n× 2n matrix model reads

λ2n − P(n−1)λ
2n−1 + P(n−2)λ

2n−2 − ... + P0 = 0 (2.10)

From the invariance of eigenvalues with respect to complex conjugation even outside Dobs(H) (C), and rescal-
ing the coefficients Pk conveniently, we might recast (2.10) into the form

sn −
(

n
1

)
P(n−1)s

n−1 +

(
n
2

)
P(n−2)s

n−2 − ... +
(

n
n

)
P0 = 0 s = λ2 (2.11)

where the condition λ ∈ R becomes s ≥ 0. The coefficients Pk can be expressed by well-known formulas in
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Figure VIII: Domains of observability of (2.9) for H4

terms of polynomial roots, resulting in a simple necessary condition for the reality of spectrum

s1 + s2 + ... + sn = P(n−1) ≥ 0

s1s2 + s1s3 + ... + sn−1sn = P(n−2) ≥ 0

s1s2s3 + s1s2s4 + ... + sn−2sn−1sn = P(n−3) ≥ 0

(2.12)

For n ≤ 11, we are able to reverse the statement, and give a sufficient condition for s ≥ 0 from the coefficients
Pk themselves, which means we are able to express Dobs exactly up to a polynomial of order 22! The complete
list is given in [49], we write explicitly the simples case of n = 2, 3.

n = 2 : P1, P2 ≥ 0, P2
1 ≥ P2

n = 3 : P1, P2, P3 ≥ 0, 3P2
1 P2

2 + 6P1P2P3 ≥ 4P3
2 + P2

3 + 4P3P3
1

(2.13)

The domain of observability of (2.9) is sampled in fig. VIII for n = 2. The cusp shape of Dobs seems to be
characteristic for oscillator models and relevant to cusp catastrophes in classical catastrophe theory [38].

2.2.2 II: Chain model

Figure IX: Big banging spectrum of model (2.16) for n = 8

This model [50] may be seen as inspired by the harmonic oscillator Hamiltonian in energy representation,
complemented with a (sufficiently small) antisymmetric perturbation. It is again made dependent on n general
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parameters, which can be expressed sampled for dimension 6 as

H6 =



−5 γ
−γ −3 β

−β −1 α
−α 1 β

−β 3 γ
−γ 5

 (2.14)

The general recipe (2.13) may be employed in unchanged manner to construct Dobs(H). Exceptional sym-
metry of Dobs(H), as seen in fig. X, served as a motivation in [50] to search for the cusp locations in closed
form. Extensive use of symbolic manipulations has provided a conjecture, that the coordinates of maximally
degenerate EPs of model (2.14) are given by

g(EEP)
n =

√
n(N − n), n = 1, ..., N (2.15)

which can be verified simply by insertion. This enables us to achieve interesting maximal degeneracy scenar-
ios, sampled in fig. IX, by a simple tuning of parameters. Such maximal degeneracy of eigenvalues has been
shown relevant e.g. in [51] the context of cosmology. The fine-tuned matrix is sampled for dimension 4 as

H(BB)
4 =


−3

√
3λ

−
√

3λ −1 2λ

−2λ 1
√

3λ

−
√

3λ 3

 (2.16)

Figure X: Domains of observability of (2.14) for H4

2.2.3 III: Orthogonal polynomials

This model exploits the well-known correspondence between orthogonal polynomials [52] and tridiagonal
matrices to establish a broad family of crypto-hermitian models. We say, that a polynomial sequence (Pn)∞

n=0
is orthogonal, if there exists a measure µ on R, such that

〈Pm|Pn〉 =
∫

R
Pm(x)Pn(x)dµ(x) = 0 for m 6= n (2.17)

We list two relevant results from the theory of orthogonal polynomials, which can be found in [52]. Let Pn(x)
be an orthogonal polynomial sequence.

• It obeys xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x) for bn ∈ R, ancn > 0

• Every Pn(x) has n distrinct real roots.
(2.18)
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Figure XI: Pseudospectra of OPS of Gegenbauer-type, Laguerre-type and the example (2.23) for n = 100

Orthogonal polynomials admit a simple representation in terms of tridiagonal matrices. To see this, it suffices
to observe that the sequence of characteristic polynomials of

Hn =



b1 a1 0 . . . 0 0
c2 b2 a2 . . . 0 0
0 c3 b3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . bn−1 an−1
0 0 0 . . . cn bn


(2.19)

satisfies the recurrence (2.18), and thus defines an orthogonal polynomial sequence. The n − th member of
the series has n real nondegenerate roots, which proves its crypto-hermicity. Curiously enough, this family of
matrices admits a general solution of the Dieudonné equation in a recurrent form [53]. Consider the equation
H†

nΘn = ΘnHn, with (2.19) reparametrized as

Hn =


a11 a12 0 . . . 0
a21 a22 a23 . . . 0
0 a23 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann

 Θn =


θ11 θ12 θ13 . . . θ1n
θ∗12 θ22 θ23 . . . θ2n
θ∗13 θ∗23 θ33 . . . θ3n

...
...

...
. . .

...
θ∗1n θ∗2n θ∗3n . . . θnn

 (2.20)

Comparing both sides of Dieudonné equation elementwise elementwise yields θij = θ∗ij and a set of recur-
rences for the (real) matrix elements θij

a(k+1)kθ(k+1)(k+n−1) = ak(k+1)θk(k+n)
bkθk(k+n−1) + ck+1θ(k+1)(k+n) = ak+2θk(k+n−1) + bkθ(k)(k+n−1)

. . .

. . .
∑n

j=1 a(n+k)nθ(n+k)(n+1) = ∑n
j=1 a(n+k+1)(n+1)θ(n)(n+k+1)

(2.21)

These recurrences, when solved from the first one downwards, admit explicit solution, with n free parameters
θ11, ..., θ1n admitting to be chosen along the way. As a special case, when assuming a diagonal metric ansatz in
(2.20), the recurrences degenerate into

θj+1 = θj
aj

cj+1
(2.22)

Example [54]

Motivated again by the problem of quantum catastrophes (1.18), we construct a family of n-parametric 2n× 2n
matrices, shown for dimension 6

H6 =



0 1− γ
1 + γ 0 1− β

1 + β 0 1− α
1 + α 0 1− β

1 + β 0 1− γ
1 + γ 0

 (2.23)
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Figure XII: Domains of observability of (2.23) for H4

Such matrices obey the three term recurrence (2.18) for α, β, γ, ... ∈ (−1, 1). This would suggest that the domain
of observability is a mere hypercube in the multiparametric space, which is further supported by contructing
a simplest diagonal metric operator from the recurrences (2.22), whose domain of positivity is precisely that
hypercube.

Curiously enough, plotting of the actual domain of observability of fig. XII shows Dobs(H) larger than con-
jectured. This means, that despite the singularity of the metric and breakdown of the orthogonal polynomial
framework, there exist some (non-diagonal) metric operators positive for a larger domain of parameters. This
model can again be simply tuned to show the big-baning spectrum of (2.16): it suffices to fix

α = β = γ = ... = λ (2.24)



Chapter 3

Differential models

3.1 Theoretical aspects

3.1.1 Quasi-exact solvability

Exactly solvable models lie in the center of quantum mechanics. Besides their direct application to phe-
nomenology, they serve as a starting point for perturbative approximations, and admit observation of non-
perturbative effects themselves [55]. However, currently known exactly solvable models form a limited family:
they are basically just the harmonic oscillator, the hydrogen-like atom, Morse potential, Pöschl-Teller potential
and a few others [56]. This motivates a generalization of the concept of exact solvability, which would broaden
the range of operators while preserving most of its above-mentioned merits. Such generalization is found in
the concept of quasi-exact solvability [57].

We say that a self-adjoint operator H is exactly solvable, if its eigenvalue equation can be transformed into
hypergeometric equation by a change of variables. That means we are able to construct a basis of hypergeo-
metric functions (ψn), such that it diagonalizes the operator

(Hij) =
(
〈ψi|H|ψj〉

)
= diag (λi) (3.1)

understood again in the sense of (A). Similarly, we call a self-adjoint operator H quasi-exactly solvable, if some
basis of hypergeometric functions (ψn) transforms it into

(Hij) =



H11 . . . H1n
...

. . .
...

Hn1 . . . Hnn

nonzero elements


(3.2)

In such case, the upper left block of H is finite and its diagonalization is an algebraic process. A finite number
of eigenvalues can be expressed as polynomial roots, and the corresponding eigenvectors remain in elemen-
tary form. The concepts of exact and quasi-exact solvability can be naturally generalized to crypto-self-adjoint
models, with the notion of orthonormal basis replaced by Riesz basis (B.2).

Example (sextic oscillator)

Generalizations of harmonic oscillator are natural potentials to examine when searching for quasi-exactly
solvable models. We shall see shortly that the quartic oscillator does not enjoy such a property, making the
sextic oscillator, studied in [58], a next-to-trivial choice. It is defined on L2 (R) as

H = − d2

dx2 + ax2 + bx4 + cx6 D(H) = Dmax (3.3)
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where we shall assume c > 0, so that V(x) is an infinite potential well with a purely discrete spectrum in the
light of [59]. Inspired by the eigenfunctions of harmonic oscillator, we formulate wavefunction ansatz

ψ(x) = exp
(
−αx2

2
− βx4

4

) ∞

∑
n=0

ξnx2n (3.4)

is insert it into Hψ(x) = λψ(x). Comparing coefficients of such a polynomial series pairwisely yields a five-
term recurrence relation anξn+2 + bnξn+1 + cnξn + dnξn−1 + enξn−2 = 0 with

an = −2n(2n + 1) cn = a + 3β + 2βn− α2 en = c− β2

bn = α + 2αn− λ dn = b− 2αβ
(3.5)

We can refine the wavefunction ansatz (3.4) by the choice α = b/2
√

c, β =
√

c, which makes (3.5) degenerate
into a three-term recurrence with

an = −(2n + 1)(2n) bn =
b

2
√

c
+

bn√
c
− λ cn = 3

√
c− b2

4c
+ 2
√

cn + a (3.6)

correspoding to a tridiagonal infinite matrix (Hij) = 〈ψi|H|ψj〉. In order to achieve the block-diagonal form
(3.2), we need one of the elements an, cn to vanish for some n ∈N. The only option here is cn = 0, resulting in

1√
c

(
b2

4c
− a
)
= 2n + 3 n ∈N (3.7)

As long as this constraint is satisfied, (3.3) is quasi-exactly solvable and (Hij) is a block-diagonal matrix with
a finite n× n block. Note that when c = 0 (the quartic oscillator [55]), the model is not quasi-exactly solvable
for any values of a, b.

3.1.2 Dieudonné equation in phase space

Solving the Dieudonné equation (1.10) in infinite-dimensional spaces can be often very difficult of even im-
possible. An alternative approach can be applied for operators on L2(Rn) using techniques of phase-space
quantum mechanics [60], in particular the Wigner-Weyl transform [61]. The Wigner-Weyl transform is a bijec-
tion ↔ between closed operators on L2(Rn) and smooth functions on Rn, which can be shown [61] to have
the following properties:

• x↔ x, p↔ p
• H bounded↔ H(x, p) bounded

• H↔ H(x, p) if and only if H† ↔ H∗(x, p)
• H ≥ 0↔ H(x, p) ≥ 0

(3.8)

In the phase space, the role of non-commutative operator multiplication is played by the star product, a map-
ping compatible with the Wigner-Weyl transform in the sense that

? : Rn ×Rn −→ Rn F ·G↔ F(x, p) ? G(x, p) (3.9)

The most commonly used form of star product is the Moyal product [62], defined as

F(x, p) ? G(x, p) = F(x, p) exp
(

1
2
(
←−
∂x
−→
∂p −

←−
∂p
−→
∂x )

)
G(x, p)

=
∞

∑
n=0

n

∑
k=0

(−i)n(−1)k

2nn!

(
n
k

)
∂nF(x, p)
∂xk∂pn−k

∂nG(x, p)
∂pk∂xn−k

(3.10)

With this knowledge in mind, we are able to transform the operator Dieudonné equation into its phase-space
equivalent, a partial differential equation. We compute a phase-space counterpart of H ↔ H(x, p) and solve
the equation

H∗(x, p) ? Θ(x, p) = Θ(x, p) ? H(x, p) (3.11)

for Θ satisfying ε ≤ Θ(x, p) ≤ K. Note that this PDE has finite order only if H(x, p) is a polynomial in x and
p, which is a often encountered but not ubiquitous phenomenon.
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3.1.3 Klein-Gordon equation in quantum mechanics

The Klein-Gordon equation [59] is one of the relativistic versions of the Schrödinger equation. It is a basic
equation in quantum electrodynamics, where it describes time evolution of a charged spinless scalar field. In
a free-field form, it reads (

�+
m2c2

h̄2

)
ψ(x, t) = 0 (3.12)

The original purpose of the Klein-Gordon equation was to describe relativistic spinless particles in quantum
mechanic. Such approach however encountered a fundamental obstacle regarding negative probability den-
sities, and had to be abandoned for almost 80 years. In this section, following the ideas of [63], we make
quantum-mechanical interpretation of the Klein-Gordon equation possible, using tools of crypto-self-adjoint
quantum mechanics.

Postulates of quantum mechanics make each solution of the Schrödinger equation |ψ(t)〉 ∈ H generate a
probability density ρ(x, t): a function which is non-negative, integrable and locally conserved, meaning that
it obeys the continuity equation ρt +∇~j = 0 for some~j. This could be satisfied by the choice

ρ(x, t) = |ψ(x, t)|2 = |〈x|ψ(t)〉|2 ~j(x, t) =
ih̄
2m

(ψ∗∇ψ− ψ∇ψ∗) (3.13)

Equivalently, this means that ρ(x, t) corresponds to an inner product conserved in time

〈φ(t)|ψ(t)〉 =
∫

R
ρ(x, t)dx =

∫
R
|ψ(x, t)|2dx (3.14)

To make the Klein-Gordon equation a genuine part of quantum mechanics, it is necessary to find relativistic
analogues of (3.13) and (3.14). Intuition would suggest to replace (3.13) by a four-current

jµ(x, t) =
ih̄
2m

(ψ∗∂µψ− ψ∂µψ∗) (3.15)

which can be shown to be indeed locally conserved with a correct c→ ∞ limit [? ]. However, the null compo-
nent of jµ, aiming to describe the probability density, does not satisfy the positivity condition. Equivalently,
the corresponding Klein-Gordon inner product is indefinite.

ρ =
1
c

j0 =
ih̄

2mc2

(
ψ∗

∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
〈φ|ψ〉KG =

ih̄
2mc2 (〈φ|ψ̇〉 − 〈φ̇|ψ〉) (3.16)

which necessitates the current (3.15) to be abandoned as non-physical. In further search for physically correct
quantitites, we make use of crypto-self-adjoint theory. We rewrite the equation (3.12) as

ψ̈(x, t) + Dψ(x, t) = 0 D = −∆ +
m2c2

h̄2 (3.17)

which can be recast into a system of two first-order PDEs in the so-called Feschbach-Villars representation
[64].

ih̄Ψ̇(x, t) = HΨ(x, t) Ψ(t) =
[

iψ̇(x, t)
ψ(x, t)

]
H = h̄

[
0 D
I 0

]
(3.18)

As long as D = D† in L2 (R), we may conjecture that H is crypto-self-adjoint in L2 (R)
⊕

L2 (R), and construct
metric operators by summing the spectral resolution series (B.8).

Θ = α+

[
1 −D1/2

−D1/2 D

]
+ α−

[
1 D1/2

D1/2 D

]
= (α+ + α−)

[
1 α−−α+

α++α−
D1/2

α−−α+
α++α−

D1/2 D

]
(3.19)

By denoting α = α−−α+
α++α−

and neglecting global multiplication by a constant, we get

Θ =

[
1 αD1/2

αD1/2 D

]
α ∈ (−1, 1) (3.20)



Chapter 3. Differential models | 19

0 100 200 300 400 500 600 700
−300

−200

−100

0

100

200

300

Figure XIII: spectrum and pseudospectra of (4.29) for µ = 0.015 (κ ∼ 3.4× 1014)

Such metric operators are apparently not bounded, which makes them fall out of the crypto-self-adjoint frame-
work in the strict sense. It is however not the end of the story, as it is possible for the Dyson mapping Ω to
exist even in the case of unbounded metric operators [65]. The corresponding family of inner products is

〈φ|ψ〉Θ = 〈Φ|Θ|Ψ〉 = 〈φ|D|ψ〉 − 〈φ̇|ψ̇〉+ iα
(
〈φ|D1/2|ψ̇〉 − 〈φ̇|D1/2|ψ〉

)
(3.21)

The explicit construction of the probability density ρ(x, t) from 〈φ|ψ〉KG is also possible, but shows to be more
involved[63]. Note that the same procedure done here for the Klein-Gordon equation can be repeated for the
Proca equation, as shown in [43].

3.2 Models

We introduce several differential operators defined on a finite interval instead of the whole L2 (R). The reason
for this is twofold: such models are readily generalized to the case of compact graphs, and also because the
study of differential operators on L2 (R) usually leads to unbounded or singular metric operators [48].

3.2.1 I: Convection-diffusion operator

This model takes inspiration from the phenomena of diffusion and convection, which appear very often in
fluid dynamics, an obvious example being the Navier-Stokes equations. It was initially introduced in [6] and
has the form

Hd = −µ
d2

dx2 +
d

dx
D(Hd) = {ψ ∈W2,2 ([0, d])

∣∣ψ(0) = ψ(d) = 0 } (3.22)

The Dirichlet boundary conditions are chosen just for purposes of solvability: the procedure could be repeated
for any boundary conditions of a self-adjoint Laplacian, see (4.8). In the Dirichlet case, the eigenvalue equation
can be solved explicitly as

λn = − 1
4µ

+
µπ2n2

d2 ψn(x) = exp
(

x
2µ

)
sin
(πn

d
x
)
= exp

(
x

2µ

)
χD

n (x) (3.23)

Because the eigenfunctions of the Dirichlet Laplacian χD
n (x) form a complete orthonormal basis, it is clear that

(ψn) is a Riesz basis (B.2) with C = max { 1, exp(d/2µ) }. This implies that (4.29) is crypto-self-adjoint and its
spectrum is purely discrete. In this case, a similarity transformation Ω can be guessed readily from the shape
of eigenfunctions (3.23).

Θ = exp
(

x
µ

)
Ω = Θ1/2 = exp

(
x

2µ

)
(3.24)

and the isospectral self-adjoint counterpart of Hd is

hd = Ω−1HdΩ = −µ
d2

dx2 +
1

4µ2 D(hd) = D(Hd) (3.25)
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Such Θ could be found also using the phase-space technique (3.11). The corresponding phase-space function
yields H↔ µp2 + ip, and the equation (3.11) reads

Θ(x, p) = µ
∂

∂x
Θ(x, p) (3.26)

The transformation Ω is highly non-unitary for small µ: its condition number is κ = ‖Ω−1‖‖Ω‖ = e1/2µ.
This is reflected in the non-trivial behavior of pseudospectra, shown in fig. XIII. In the limit d → ∞, the
metric operator becomes unbounded and H loses its crypto-self-adjointness property. Indeed, by Fourier
transforming H on L2 (R) into a multiplication operator H = µp2 + ip, we see that its spectrum forms a
parabola in the complex plane:

σ(H) = { λ ∈ C
∣∣ Re λ = (µ Im λ)2 } (3.27)

which suggests, in parallel to (2.7), the convergence of pseudospectra of Hd to those of H in the limit d→ ∞.

3.2.2 II: Complex Robin boundary conditions

Boundary conditions of the Laplacian ∆ admit a simple matrix characterization (4.4), with self-adjoint bound-
ary conditions distinguished by a simple rule (4.8). It was suggested in [66] to turn attention to non-self-adjoint
boundary conditions, whose spectral problem maintains the feature of explicit solvability. This is achieved in
the case of

∆α = − d2

dx2 D(∆α) = {ψ ∈W2,2(−a, a)
∣∣ ψ′(−a) = iαψ(−a), ψ′(a) = iαψ(a) } (3.28)

It can be directly verified that ∆†
α = ∆−α, and the operator is non-self-adjoint for α 6= 0. Solving its eigenvalue

equation explicitly yields

λ0 = α2 ψ
(α)
0 (x) = exp(iα(x + a))

λn =
n2π2

4a2 ψ
(α)
n (x) = cos

(πn
2a

(x + a)
)
− iα

2a
πn

sin
(πn

2a
(x + a)

) (3.29)

which shows that the eigenvalues are real and ψα
n(x) are simple combinations of Dirichlet and Neumann

eigenfunctions χN
n (x) and χD

n (x)

ψα
n(x) = χN

n (x)− iαknχD
n (x) φα

n(x) = χN
n (x) + iαknχD

n (x) kn =
2a
πn

(3.30)

which form orthonormal bases in L2([−a, a]). This shows that (ψα
n) is a Riesz basis (B.2) of L2([−a, a]) with

C = max { 1, 1 + 2αa/π }, and (3.28) is a crypto-self-adjoint operator. Moreover, the metric operator admits
explicit construction by summing the spectral resolution series. Inserting (3.30) into (B.8) yields

Θα =
∞

∑
n=0
|φα

n〉〈φα
n| = I− |φα

0 〉〈φα
0 | − |χN

0 〉〈χN
0 |+ iα

∞

∑
n=1

|χD
n 〉〈χN

n | − |χN
n 〉〈χD

n |
kn

+
∞

∑
n=1

|χD
n 〉〈χD

n |
k2

n
(3.31)

Because k2
n are precisely the eigenvalues of the Dirichlet Laplacian, the last sum may be seen as a spectral

resolution of inverse operator (−∆D)
−1, which can be expressed in explicit integral form. Similarly, the middle

sum is integrated by parts to yield

i
∞

∑
n=1

|χD
n 〉〈χN

n | − |χN
n 〉〈χD

n |
kn

= p
∞

∑
n=1

|χD
n 〉〈χD

n |
k2

n
+ p∗

∞

∑
n=1

|χD
n 〉〈χD

n |
k2

n
(3.32)

with p and p∗ being classical momentum operators with domains W1,2(−a, a), respectively W1,2
0 (−a, a), yield-

ing again the spectral resolutions for (−∆D)
−1 and (−∆N)

−1, with the latter understood in the sense of re-
duced resolvent [4]. Such operators admit expression in terms of integral kernel, which can be verified by
direct multiplication. The kernels have the form

KD(x, y) =
(x + a)(a− y)

2a
KN(x, y) =

(x + a)2 + (y− a)2

4a
− a

3
x < y (3.33)
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with the roles of x, y reversed for x > y. Inserting formulas (3.32) and (3.33) into (3.31) yields the metric
operator in a remarkably explicit form Θ = I + K, with the integral kernel of K being

K(x, y) =
i
a

exp
(

iα
2
(x− y)

)
sin
(α

2
(x− y)

)
−

− iα
2a

(|x− y| − 2a) sgn(y− x) +
α2

2a

(
a2 − xy− a|y− x|

)
x > y

(3.34)

We are even able to express the similarity operator Ω, as it can be directly verified that it admits an expression

Ω = |χN
0 〉〈φ0|+

∞

∑
n=1
|χN

n 〉〈χN
n | − iα

∞

∑
n=1

|χN
n 〉〈χD

n |
kn

(3.35)

which again admits integrating by parts into the form expressible by (−∆D)
−1 and (−∆N)

−1. The self-adjoint
counterpart of (3.28) is then finally computed to be

h = ΩHΩ−1 = ∆ + α2|χN
0 〉〈χN

0 | D(h) = {ψ ∈W2,2∣∣ψ′(0) = ψ′(d) = 0 } (3.36)

3.2.3 III: Klein-Gordon model

With the knowledge of the fresh quantum-mechanical interpretation of the Klein-Gordon equation (3.12), we
illustrate solving such equation on a simple example. Using again the Feschbach-Villars representation of the
Klein-Gordon equation [

0 H
I 0

] [
φ(x)
ψ(x)

]
= λ

[
φ(x)
ψ(x)

]
(3.37)

we see that the second row of (3.37) stands for φ(x) = λψ(x), and insertion into the first row results in Hψ =
λ2ψ, thus making the eigenvalue Klein-Gordon equation reducible to a eigenvalue Schrödinger equation, with
the eigenvalues having being related as

λKG = ±
√

λS (3.38)

We apply these results to the exactly solvable Pöschl-Teller potential [67]

H = − d2

dx2 −
l(l + 1)

2 cosh2(x)
D(H) = Dmax (3.39)

which a finite well decaying to zero as x → ±∞, suggesting [59] that is admits a finite number of bound states
below continuous ionized spectrum. In search for the bound states, we use the wavefunction ansatz

ψ(x) =
∞

∑
n=0

ξn

cosh2n(x)
(3.40)

Inserting ψ(x) into the Schrödinger equation, one gets a three-term recurrence formula

an = −(n− 1)(n− 2) bn = 2n2 − l(l + 1)− λ cn = l(l + 1)− (n− 2)(n− 1) (3.41)

To terminate such a recurrence, it is necessary that λ ∈ N. The solution of the resulting finite-dimensional
algebraic problem can be written in terms of Legendre polynomials as λn = −n2 ψn(x) = Pn

λ (tanh(x)) for
n = 1, 2...l. This yields the result for the Klein-Gordon eigenvalues

λn = n n = −l...l (3.42)



Chapter 4

Crypto-self-adjoint quantum graphs

4.1 Theoretical aspects

This section aims to apply the crypto-self-adjoint formalism to operators on quantum graphs [17], which are
simply oriented graphs G [68] together with a Hilbert space H(G). Such Hilbert space is traditionally con-
structed, in parallel with the real line case, by we associating each edge ε ∈ E(G) to a length aε ∈ R+ and a
measure dxε, and taking the space of square-integrable function with respect to such measure

H(G) =
⊕

ε

Hε =
⊕

ε

L2([0, aε], dxε) (4.1)

The inner product onH(G) shall be assumed, again in parallel with L2 (R), to be

〈φ|ψ〉G = ∑
ε

〈φ|ψ〉ε = ∑
ε

∫
ε

φ∗(xε)ψ(xε)dxε (4.2)

4.1.1 Graph Laplacian

The Laplacian ∆ acting on arbitrary quantum graph G with various boundary conditions imposed at the
vertices is a well-motivated [69] and well-explored [70] subject. It turns out that many important properties
of ∆ follow already from the matrices of vertex boundary conditions. Here we review several possible ways
to construct such matrices and characterize the boundary conditions [27], which are defined as extensions of
a minimal Laplacian

∆min = − d2

dx2 D(∆min) = {ψ ∈W2,2(G) | ψ(v) = 0, ψ′(v) = 0 ∀v ∈ V } (4.3)

For a graph G with a single vertex, we proceed in the following way: we construct a vector of boundary values
ψ(v) = [ψ1(v), ..., ψdν

(v)]T and introduce three possible dν-dimensional matrix parametrizations

• Aψ(v) + Bψ′(v) = 0 general

• ik(U− I)ψ(v) + (U + I)ψ′(v) = 0 regular

• Pψ(v) = 0, Qψ′(v) + LQψ(v) = 0 sectorial

(4.4)

For a graph G with more that one vertex, we can always reduce it into a single-vertex graph, as illustrated in
fig. XIV. Moreover, because we shall be working exclusively with local boundary conditions, we can always
define ψ(v) = (ψ(v1), ..., ψ(vn))T and the global matrices of dimension ∑ dν as

Aψ(v) + Bψ′(v) = 0 A = diag(Av) B = diag(Bv) (4.5)

The general parametrization apparently parametrizes all possible extensions of (4.3), whereas the other two
parametrizations do not. The regular parametrization for a given k can be obtained through the transformation

U(k) = −(A + ikB)−1(A− ikB) (4.6)
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and the sectorial parametrization is found by taking P to be orthogonal pojection on ker B, Q to be orthogonal
projection of (ranB)⊥, and

L = (B|ran B†)−1AP⊥ (4.7)

In the rest of this section, we provide a systematic characterization of extensions of ∆min. We shall always
assume dim(A, B) = ∑ dν, otherwise the operator can be shown to have a trivial spectrum [27].

Figure XIV: Every compact graph G can be deformed to a single-vertex graph

Self-adjoint boundary conditions

It is a simple excercise to verify that (4.3) is a symmetric operator with deficiency indices (n, n), thus admitting
a number of self-adjoint extensions. A classical result of Von Neumann’s extension theory [3] states, that ∆ is
a self-adjoint operator if and only if admits the regular parametrization (4.4) with k = 1 and U unitary. Using
the inverse to (4.6), which has the form

A = I−U B =
I + U

ik
(4.8)

and the transformation (4.7), which will be shown to always exist in this case (4.11), we establish equally
simple conditions of self-adjointness for regular and sectorial parametrizations [? ], with the results

AB† = BA† U−1 = U† L = L† (4.9)

Example of self-adjoint conditions are the ordinary Robin boundary conditions with α, β ∈ R and

A =

[
α 0
0 β

]
B =

[
1 0
0 1

]
(4.10)

M-sectorial boundary conditions

Contrary to the general parametrization (4.4), regular and sectorial parametrizations to not describe all ex-
tensions of ∆min. They do, however, correspond to certain important classes of operator. Here we justify the
name for the sectorial parametrization: it was shown in [71], that the operator L from (4.7) exists (B|ker B† is
invertible) if and only if ∆ is m-sectorial (D), and that it is equivalent to the condition

QAP⊥ = 0 (4.11)

As an example of such boundary conditions, consider the conditions corresponding to complex δ-interaction
[17]

A =

[
1 −1
α 0

]
B =

[
0 0
1 1

]
(4.12)

which are apparently not self-adjoint for α /∈ R, whereas the criterion (4.11) gives for any α ∈ C

QAP⊥ = −1
2

[
1 0
0 0

] [
1 −1
α 0

] [
1 1
1 1

]
= 0 (4.13)

From (D) follows that m-sectorial operators are precisely those admitting representation in terms of sesquilin-
ear forms. For a given ∆ parametrized by Q, P, L, the corresponding form can be shown [71] to be

h[ψ] = ‖ψ′‖2
G + ∑

n
〈LQψn(v)|Qψn(v)〉 D(h) = {ψ ∈W2,2(G) | Pψn(v) = 0 } (4.14)
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Regular boundary conditions

As long as we are interested in crypto-self-adjoint operators, we do not need to further generalize the m-
sectorial conditions, because any crypto-self-adjoint operator bounded below is apparently m-sectorial. Just
for the sake of completeness, we consider conditions which are not m-sectorial, but still admit the parametriza-
tion in terms of U and k. Such conditions are commonly denoted as regular. All m-sectorial conditions are
regular, which follows from the fact that the matrix (L + P + ikP⊥) is invertible for k > ‖L‖, and the trans-
formation

U(k) =
(

L + P + ikP⊥
)−1 (

L + P + ikP⊥
)

(4.15)

On the other hand, not all regular conditions are m-sectorial: as and example, consider [27]

A =

[
1 0
0 1

]
B =

[
0 0
−1 0

]
(4.16)

for which the criterion of m-sectoriality (4.11) gives

QAP⊥ =

[
1 0
0 0

] [
1 0
0 1

] [
1 0
0 0

]
=

[
1 0
0 0

]
6= 0 (4.17)

while (A− ikB) is invertible for any k ∈ C. To make the characterization of boundary conditions complete,
we call conditions not satisfying the regularity assumption as irregular. Most often, they correspond to patho-
logically behaved ∆, and example being

A =

[
1 1
0 0

]
B =

[
0 0
1 1

]
(4.18)

Crypto-self-adjoint boundary conditions

A central task of this section would be obviously to parametrize crypto-self-adjoint boundary conditions. In
case that the self-adjoint partner of ∆ is another Laplacian, the problem can be, at least in the case of equilateral
graphs, again parametrized by boundary condition matrices. Indeed, it was proven in [27], that whenever
there exists a positive W, such that

AWB† = BWA† WU−1 = U†W WL = L†W (4.19)

then we can declare ∆ to be crypto-self-adjoint. An example of such boundary conditions would be general-
ized Robin conditions with α, β, γ ∈ R

A =

[
α γ
0 β

]
B =

[
1 0
0 1

]
(4.20)

In general, however, ∆ may be similar to any conceivable self-adjoint operator. As an example, consider the
conditions

A =

[
iα 0
0 −iα

]
B =

[
1 0
0 1

]
(4.21)

corresponding to the model (3.28). Although there is no positive matrix W satisfying (4.19), this operator was
already shown crypto-self-adjoint, with its self-adjoint counterpart given by (??).

4.2 Models

The final section of this work introduces several simple models, which provide a framework to apply our
crypto-self-adjoint formalism in the case of quantum graphs. Properties of these models shall be illustrated
on a star graph with the boundary conditions

D(∆1) =

{
ψ ∈W2,2(G)

∣∣∣∣ ψε(0) = 0 ψε(dε) = ψε′(dε) ∑
ε

ψ′ε(dε) = αψ(dε)

}

D(∆2) =

{
ψ ∈W2,2(G)

∣∣∣∣ ψ′ε(0) = 0 ψ′ε(dε) = ψ′ε′(dε) ∑
ε

ψε(dε) = αψ′(dε)

} (4.22)
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which are commonly denoted as δ and δ′ interaction conditions [17]. The matrices (4.4) have a simple form,
sampled here for dimension 4 as

A/B =


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 −α

 B/A =


0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

 (4.23)

It can be directly verified using criteria (4.8) and (4.11), that the operators (4.22) are self-adjoint for α ∈ R and
m-sectorial for any α ∈ C. The secular equations can be written explicitly as

∑
ε

cot (κdε) =
α

κ ∑
ε

tan (κdε) = −
α

κ
(4.24)

4.2.1 I: Weighted/gauged Laplacian

Here we present two generalizations of ∆ with abitrary boundary conditions of (4.4) which acquire a natu-
ral interpretation in the crypto-self-adjoint formalism. The first one is made by introducing a multiplicative
weight function wε obeying the inequalities c > wε(xε) > c−1 > 0, transforming ∆ into

∆ = −wε(xε)
d2

dx2
ε

D(∆min) ⊆ D(∆) ⊆W2,2(G) (4.25)

Such weight function may easily spoil the self-adjointness of ∆, as seen from integrating by parts, e.g. in the
model (4.22). It is however a simple observation, that (4.25) can be returned to the self-adjoint framework by
introducing a representation spaceH(S) with the inner product

〈φ|ψ〉W = ∑
ε

∫
ε

φ∗(xε)ψ(xε)w−1(xε)dxε (4.26)

Following the recipe of (4.4), we may again truncate such metric operator into matrix form, which provides a
definite answer to a question of Laplacian self-adjointness. The truncated metric operator is a diagonal matrix
of dimension ∑ dν

W = diag
[

1
wε(0)

,
1

wε(dε)

]
(4.27)

As long as G is a compact graph and the condition wε(xε) > c > 0 holds, such metric is apparently bounded
together with its inverse. The case of the weight function may be thus transformed away just as well as crypto-
self-adjoint conditions ∆ in (4.19). Moreover, this result can be applied to graphs with inequal edge lengths. If
we assume to be constant edgewise wε(xε), we may generalize the secular equation (4.24) into the form

∑
ε

1√
wε

cot
(

κdε√
wε

)
=

α

κ ∑
ε

1√
wε

tan
(

κdε√
wε

)
= −α

κ
(4.28)

Exactly the same recipe may be applied to generalize (4.29) to a compact graph G, with boundary conditions
again parametrized as in (4.4)

H = −µ
d2

dx2
ε
+

d
dxε

D(∆min) ⊆ D(∆) ⊆W2,2(G) (4.29)

Because the mapping (3.24) remains bounded and boundedly invertible when acting on a compact graph, all
the fact shown in (4.29), including the reality and discreteness of spectrum and completeness of eigenfunctions,
remain valid. The truncated metric operator (3.24) truncated to the vertices has the form

W = diag
[

1, exp
(

dε

µ

)]
(4.30)

which may be of course freely combined with any weight function of (4.25), resulting again in a diagonal
metric. The secular equations (4.24) for the convection-diffusion case read

q
2µ

+
1

2µ ∑
ε

cot

(√
1− 4λµ

2µ
dε

)
=

α

κ

q
2µ

+
1

2µ ∑
ε

tan

(√
1− 4λµ

2µ
dε

)
= −α

κ
(4.31)
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4.2.2 II: Complex Robin boundary conditions

This model, introduced in [28], may be seen as a direct generalization of (3.28) from real interval to a compact
graph G. For reasons of simplicity, we restrict attention to an equilateral star graph. Denoting the edge length
as L, number of edges as q, and φ = 2π/q, we write

D(∆) =

{
ψ ∈W2,2(G)

∣∣∣∣ ψε(L) = ψε′(L), ∑
ε

ψ′ε(L) = 0, ψ′ε(0) = iα exp (iεφ)ψε(0)

}
(4.32)

which can be expressed with the help of parametrization (4.4) as

A =

[
A′ 0
0 Aν

]
B =

[
I 0
0 Bν

]
(4.33)

with Aν, Bν being usual Kirchhoff conditions at the central vertex, expressible as (4.22) with α = 0, and

A′ = diag [iα exp (iεφ)] (4.34)

Since, just as in (4.21), the matrix Dieudonné equation does not have any positive solutions, we may conclude
that (4.32) is not similar to any self-adjoint Laplacian. The possible similarity to other self-adjoint operators
must be examined manually. The secular equation of (4.32) reads

q−1

∑
ε=0

iα exp(iεφ)− k tan(kL)
iα exp(iεφ) tan(kL) + k

= 0 (4.35)

The sum on the left side admits explicit summation, resulting in a remarkably simple formula

q
κq + (−iα)q tanq−2(κL)

κq − (iα)q tanq(κL)
tan(κL) = 0 (4.36)

Its roots split into a trivial (q-independent) part, given by roots of tan(κL) = 0 and cot(κL) = 0, and non-trivial
part given by roots of

κq + (−iα)q tanq−2(κL) = 0 (4.37)

Figure XV: Plots of (4.39) for various α (lower α - dash, higher α - dot)

Solutions of this equation are no longer accessible in explicit form. We shall discuss separately various values
of q

• q = 4n κ = −α tan
2n−1

2n (κL)

• q = 2n + 1 κ = ±iα tan
2n−1
2n+1 (κL)

• q = 4n + 2 κ = α tan
2n

2n+1 (κL)

(4.38)
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For q = 4n and q = 2n + 1, H can be shown numerically [72] to possess complex eigenvalues for any α, which
prevents them from being crypto-self-adjoint. For q = 4n + 2, by denoting k = a + ib and switching into polar
coordinates, we arrive to

2n
2n + 1

arctan
(

sinh(b) cosh(b)
sin(a) cos(a)

)
= arctan

(
b
a

)
α

(
cosh2(b)− cos2(a)
sinh2(b) + cos2(a)

) 2n
2n+1

= a2 + b2 (4.39)

with one of the equations being independent on α. We have plotted such implicit equation for various values
of α in fig. XV, with the argument equation in red, and the modulus equation in gray. We see that both
equations are satisfied for a non-trivial argument only, when α exceeds certain value αcrit ∼ 0.7863. We are
even able to determine the location of the point xα. To do this, it suffices to examine singular points (where
∂a = ∂b = 0) of the leftmost equation in (4.39), which localizes xα as an unique positive root of the equation

sin 2a
2a

=
2n

2n + 1
(4.40)



Conclusion

The constantly growing family of known crypto-self-adjoint operators motivates the study of their physical
representation spaces, which is equivalent to the study of their metric operators. Among many approaches
for constructing such metric operators, we have established techniques of solving explicitly the Dieudonné
equation (1.10), summing the spectral resolution formula (B.8), or transformation into phase space (3.11).

The studied models broadly fall into two families. The first family consists of finite-dimensional n × n
families (2.9), (2.14) and (2.19) studied from the viewpoint of quantum catastrophes. The emergence of charac-
teristic cusp-like shapes of . . . may be seen as a very pleasant phenomenon, which may, in parallel to classical
catastrophe theory, prove relevant e.g. in the field quantum phase transitions [54].

The second family contains differential models on intervals and graphs. Special attention should be paid
to the elegant model (3.28), where the exceptional simplicity of the operator itself contrasts with the nontrivial
form of the corresponding metric operators (3.34). An advection-diffusion model admitting much simpler
metric operators (which is however usually not appreciated in relevant literature) has been presented in (4.29).
These two examples are finally complemented by an application of the quantum-mechanical interpretation of
Klein-Gordon (3.12) and Proca [43] equations, achieved with the help of crypto-self-adjoint formalism (3.21).

In the final part of our considerations, crypto-self-adjoint operators have been has been considered from
the viewpoint of quantum graphs. We provided brief review of the central model of interest, Laplacian with
the boundary conditions (4.4), with emphasis on operator crypto-self-adjointness. In this field, there is still a
wide area of open problems, an example being the graph analogue of the model (3.28), where the crypto-self-
adjointness can be conjectured based on considerations from fig. XV.



Appendix

A Rigged Hilbert spaces

This section aims to give precise meaning to the notion of generalized eigenvectors, which correspond to con-
tinuous spectrum of linear operators. Such eigenvectors by definition do not belong to the Hilbert space H
under consideration, which motivates building an amended structure around such H in the spirit of distribu-
tion theory. Such structure is usually called rigged Hilbert space. It is defined as a triplet

Φ ⊆ H ⊆ Φ∗ (A.1)

where Φ is dense in H with topology inherited from H, and Φ∗ is the continuous dual of Φ (the second
inclusion has to be understood as isomorphic embedding). The subspace Φ should be chosen as maximal
subspace invariant to the action of all observables. Indeed, it can be proven [? ], that if we choose the subspace
so that H(Φ) = Φ, then there exists an unique operator H† : Φ∗ → Φ∗ satisfying

H† f (ψ) = f (Hψ) ∀ψ ∈ Φ ∀ f ∈ Φ∗ (A.2)

where we shall denote f (ψ) = 〈 f |ψ〉. The restriction of H† to Φ corresponds to usual definition of adjoint
operator. and consequently 〈H† f |ψ〉 = 〈 f |Hψ〉. This enables to rigorously define the notion of generalized
eigenvector of H. It is such f ∈ Φ∗, that obeys

〈H† f |ψ〉 = λ〈 f |ψ〉 ∀ψ ∈ Φ (A.3)

This notion gives a precise meaning to the statement ”eigenvectors of a self-adjoint operator H ∈ C (H) form an
orthonormal basis ofH”: it means that for every φ, ψ ∈ Φ, we have

〈φ|ψ〉 = ∑
n
〈φ| fn〉〈 fn|ψ〉 = ∑

n
〈 fn|φ〉〈 fn|ψ〉 (A.4)

which shall be expressed throughout this work as

I = ∑
n
| fn〉〈 fn| (A.5)

Example (Schwartz space)

Consider the space L2 (R) with canonical operators of position and momentum, defined as

(xψ)(x) = xψ(x) D(x) = {ψ ∈ L2 (R)
∣∣ xψ ∈ L2 (R) }

(pψ)(x) = i
dψ

dx
(x) D(p) = {ψ ∈ L2 (R)

∣∣ ψ ∈ AC(R) ψ′ ∈ L2 (R) }
(A.6)

The subspace maximally invariant to the action of both x and p can be expressed as

Φ =
∞⋂

n,m=0
D(AnBm) (A.7)

which is simply a space invariant to the action of derivative and polynomial multiplication. This is, by defi-
nition, the Schwartz space S [? ] of rapidly decreasing functions, which is dense in L2 (R). Its dual space S∗,
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the space of tempered distributions, contains the generalized eigenvectors of both momentum exp(ikx) and
position δ(k− x). For any two vectors fromH, we have

〈φ|ψ〉 =
∫

R
〈φ|k〉〈ψ|k〉dx =

∫
R
F(k)F(k)dk (A.8)

which is just the Parseval relation. By means of Fourier transform, the same holds for δ(x− k).

B Spectral properties of crypto-self-adjoint operators

It is a well-known fact, that eigenvectors of every self-adjoint operator form an orthonormal basis (ψn), in the
sense of (A). The notion of orthonormal basis can be (in Hilbert spaces) equivalently expressed as

∑
n
|ψn〉〈ψn| = I (B.1)

For a crypto-self-adjoint operator H, we show that its eigenvectors, despite not being orthogonal, are well-
behaved in the sense that they form a Riesz basis

C−1I ≤∑
n
|ψn〉〈ψn| ≤ CI (B.2)

Proposition ([27]). H ∈ C (H) is crypto-self-adjoint, if and only if it has real spectrum and a Riesz basis of eigenvectors.

Proof. The eigenvectors of h = ΩHΩ−1 = h† have the form (Ωψn) and form an orthonormal basis ofH, which
means that the Riesz basis property (B.2) of (ψn) holds with C = max { ‖Ω‖, ‖Ω−1‖ }. Conversely, for a given
Riesz basis ofH, which we denote (ψn), construct an operator

L = ∑
n

αn|ψn〉〈ψn| (B.3)

with αn being arbitrary positive constants. This operator is manifestly positive, and the Riesz property implies
that it is also bounded and boundedly invertible. Furthermore, the identity

∑
n

αn|ψn〉〈ψn|H† = ∑
n

αnλ∗n|ψn〉〈ψn| = ∑
n

αnλn|ψn〉〈ψn| = H ∑
n

αn|ψn〉〈ψn| (B.4)

shows that the Dieudonné equation holds holds with Θ = L−1.

In order to generalize the usual spectral resolution formulas for crypto-self-adjoint operators, we introduce
the notion of biorthonormal basis, a system (ψn, φn) satisfying 〈ψm|ψn〉 = δmn. In a Hilbert space, this again
admits and equivalent expression

∑
n
|ψn〉〈φn| = I (B.5)

It can be proven [? ], that for a given family (ψn), the biorthogonal basis (ψn, φn) exists if and only if (ψn) is a
Riesz basis. and from the formula

λn〈ψn|φm〉 = 〈Hψn|φm〉 = 〈ψn|H†φm〉 = λm〈ψn|φm〉 (B.6)

that such system could be chosen as biorthogonal complement for ψn is formed precisely of eigenvectors of
H†. The spectral resolution of the former operator and its adjoint can be written as

H = ∑
n

λn|ψn〉〈φn| H† = ∑
n

λn|φn〉〈ψn| (B.7)

The formula for Θ−1 has already been shown in (B.3) it is a genuine question to ask for spectral resolutions
for the operators Θ and Ω.

Θ = ∑
n

αn|φn〉〈φn| Θ−1 = ∑
n

αn|ψn〉〈ψn| αn > 0 (B.8)



Appendix | 31

C Crypto-self-adjointness and antilinear symmetries

A concept closely related to crypto-self-adjointness is that of having an antilinear symmetry. We say that H ∈
C (H) possesses an antilinear symmetry, if an antilinear bijection A exists, such that [H, A] = 0. Every crypto-
self-adjoint operator can be shown to possess an antilinear symmetry [73]. Although antilinear symmetry does
not quarantee reality of the spectrum by itself, it is sufficient to establish conjugate invariance of the spectrum,
which follows from the definition of spectrum and

(H− λ∗)−1 = A−1(H− λ)−1A (C.1)

and the fact that everywhere defined operators A and A−1 are necessarily bounded. A special case of an
antilinear symmetry is PT -symmetry, in which the antilinear operator PT admits a decomposition into a
linear operator of parity P and antilinear operator of time-reversal T , such that

P2 = T 2 = I [P , T ] = 0 (C.2)

Such operators are tranditionally chosen on L2 (R) to be

(Pψ) (x) = ψ(−x) (T ψ) (x) = ψ(x)∗ (C.3)

thus justifying their names. It can be shown [73] that any PT -symmetric operator is self-adjoint in a Krein
space, that is a vector space V equipped with a sesquilinear form h(., .), which admits a decomposition V =
V+

⊕ V−, such that
h(ψ+, ψ−) = 0 ψ± ∈ V± (C.4)

Any Krein space V can be promoted to a Hilbert space by introducing an inner product in terms of projections
onto V± and an involutive operator J = P+ −P− as

〈ψ|φ〉 = h(φ|J ψ) = h(ψ|P+φ)− h(ψ|P−φ) ≥ 0 (C.5)

The metric operator for such H is usually sought for with the help of the so-called charge operator C, which is
nothing more than the fundamental Krein space symmetry J . The metric operator in this case is found to be
CP [16].

D Sectorial forms and operators

It is well known [3] that there is a 1-to-1 correspondence between bounded operators H ∈ B (H) and bound-
ed, everywhere defined sesquilinear forms onH. This correspondence can be broadened to a correspondence
between sectorial forms and m-sectorial operators, by means of famous Kato’s representation theorem [4].
M-sectorial operator may be seen as a generalization of self-adjoint Hamiltonians, which still obey the fun-
damental physical requirement of boundedness from below. To state the representation theorem, we need
several auxiliary notions. A numerical range of a closed operator H ∈ C (H) is a subset of complex plane,
defined as

Θ(H) = { 〈ψ
∣∣H∣∣ψ〉 ∣∣ ‖ψ‖ = 1 } (D.1)

Figure XVI: Numerical range of a sectorial operator

A linear operator H ∈ C (H) or a sesquilinear form h(φ, ψ) on H are called sectorial, if their numerical range
lies in some sector around a positive real axis, i.e. there exist such constants µ, θ ∈ R such that

Θ(H) ⊂
{

λ ∈ C
∣∣ Re λ ≥ µ, | arg(λ− µ)| ≤ θ

}
(D.2)
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For the definition of a m-sectorial operator, we moreover impose a condition of certain well-behavedness on the
resolvent. This condition is usually quasi-m-accretivity in elliptic operator theory.

‖(H + α− λ)−1‖ ≤ 1
|Re λ| (D.3)

An operator obeying both (D.3) and (D.2) is called m-sectorial. It is precisely this family of operators that admits
equivalent representation in terms of quadratic forms.

Theorem ([4]). Let h(φ, ψ) be a closed and sectorial sesquilinear form in H. Then there exists a corresponding unique
m-sectorial operator, such that

• D(H) ⊂ D(h)
• φ ∈ D(h), ψ ∈ H =⇒ φ ∈ D(H), Hφ = ψ

(D.4)
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[3] M. Havlíček, P. Exner, and J. Blank, Hilbert space operators in quantum physics. Springer, 2008.

[4] T. Kato, Perturbation theory for linear operators. Springer, 1995.

[5] B. Davies, Linear operators and their spectra. Cambridge University Press, 2007.

[6] L. N. Trefethen and M. Embree, Spectra and pseudospectra - the behavior of nonnormal matrices. Princeton
University Press, 2005.

[7] H. Risken, The Fokker-Planck equation: methods of solution and applications. Springer, 1996.

[8] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of Political Economy,
vol. 81, no. 3, 1973.

[9] L. D. Landau and E. M. Lifshitz, Fluid mechanics (Course of theoretical physics vol.6). Pergamon Press, 1987.

[10] V. Serkin and A. Hasegawa, “Exactly integrable nonlinear schrodinger equation models with varying dis-
persion, nonlinearity and gain: application for soliton dispersion,” Selected Topics in Quantum Electronics,
IEEE Journal of, vol. 8, no. 3, pp. 418–431, May 2002.

[11] Á. Rivas and S. F. Huelga, Open Quantum Systems. Springer, 2012.

[12] N. Moiseyev, Non-Hermitian Quantum Mechanics. Cambridge University Press, 2011.

[13] F. Scholtz, H. Geyer, and F. Hahne, “Quasi-hermitian operators in quantum mechanics and the
variational principle,” Annals of Physics, vol. 213, no. 1, pp. 74 – 101, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/000349169290284S

[14] A. V. Smilga, “Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians,” Journal of
Physics A Mathematical General, vol. 41, no. 24, p. 244026, Jun. 2008.

[15] C. M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,”
Physical Review Letters, vol. 80, pp. 5243–5246, Jun. 1998.

[16] C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Reports on Progress in Physics, vol. 70, pp.
947–1018, Jun. 2007.

[17] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs. American Mathematical Society, 2013.

[18] K. Ruedenberg and C. W. Scherr, “Free-electron network model for conjugated systems,” Journal of Chem-
ical Physics, vol. 21, no. 9, pp. 1565–1581, 1953.

[19] P. Exner and O. Post, “A General Approximation of Quantum Graph Vertex Couplings by Scaled
Schrödinger Operators on Thin Branched Manifolds,” Communications in Mathematical Physics, vol. 322,
pp. 207–227, Aug. 2013.

[20] P. Kuchment and O. Post, “On the spectra of carbon nano-structures,” Communications in Mathematical
Physics, vol. 275, no. 3, pp. 805–826, 2007. [Online]. Available: http://arxiv.org/abs/math-ph/0612021

http://www.sciencedirect.com/science/article/pii/000349169290284S
http://arxiv.org/abs/math-ph/0612021


Bibliography | 34

[21] P. Kuchment and L. Kunyansky, “Differential operators on graphs and photonic crystals,”
Advances in Computational Mathematics, vol. 16, no. 2-3, pp. 263–290, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A%3A1014481629504

[22] F. Barra and P. Gaspard, “On the level spacing distribution in quantum graphs,” Journal of Statistical
Physics, vol. 101, no. 283, 2000. [Online]. Available: http://arxiv.org/abs/quant-ph/0011099

[23] V. Adamyan, “Scattering matrices for microschemes,” vol. 59, pp. 1–10, 1992. [Online]. Available:
http://dx.doi.org/10.1007/978-3-0348-8606-2_1

[24] M. Freidlin and A. Wentzel, “Diffusion processes on graphs and the averaging principle,” The Annals of
Probability, vol. 21, no. 4, 1993.

[25] N. Goldman and P. Gaspard, “Quantum graphs and the integer quantum hall effect,” Phys. Rev. B,
vol. 77, p. 024302, Jan 2008. [Online]. Available: http://arxiv.org/pdf/0709.1567.pdf

[26] H. Schanz and U. Smilansky, “Periodic-Orbit Theory of Anderson Localization on Graphs,” p. 9023, Sep.
1999.
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