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Quantum graphs

A metric graph consists of a set of edges and vertices; each edge is assigned a
positive length ¢; and therefore identified with an interval [0, 4;].

We associate with the graph the Hilbert

space H - @JN:]_ Lz([O,EJ]), the Source: the cited book
elements of which are ¥ = {4);}.

& G. Berkolaiko, P. Kuchment:/Introduction to Quantum Graphs, AMS, Providence, R.l., 2013.
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Quantum graphs

A metric graph consists of a set of edges and vertices; each edge is assigned a
positive length ¢; and therefore identified with an interval [0, 4;].

We associate with the graph the Hilbert
space H - @JN:]_ Lz([O,EJ]), the Source: the cited book
elements of which are ¥ = {4);}.

Quantum graph is a metric graph equipped with a differential operator
(acting on the graph edges) accompanied by appropriate vertex conditions.

@ In the presence of a magnetic field, the Hamiltonian acts as the
magnetic Laplacian, (—/V — A)2, assuming h =2m = 1.

@ To make such a Hamiltonian a self-adjoint operator, one has to match the
functions 1); properly at each graph vertex.

& G. Berkolaiko, P. Kuchment:/Introduction to Quantum Graphs, AMS, Providence, R.l., 2013.
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Vertex coupling

At each vertex v connecting n edges of the graph, the self-adjointness is
ensured provided the functions at the vertex are matched through the
condition

(U-NHwv, +i(U+ I (DVv), =0,

where U is an n X n unitary matrix, D := d% — i Aj is the quasi-derivative
operator, A; is the tangential component of the magnetic vector potential
on the jth edge, ¥, and (DV), are the vectors of the boundary values of
functions and their (outward) quasi-derivatives.
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Vertex coupling

At each vertex v connecting n edges of the graph, the self-adjointness is
ensured provided the functions at the vertex are matched through the

condition
(U-NHwv, +i(U+ I (DVv), =0,

where U is an n X n unitary matrix, D := d% — i Aj is the quasi-derivative
operator, A; is the tangential component of the magnetic vector potential
on the jth edge, ¥, and (DV), are the vectors of the boundary values of
functions and their (outward) quasi-derivatives.

The most commonly used coupling conditions:

@ J-coupling, and in particular, Dirichlet and Kirchhoff conditions;

corresponding to the choice of U = nfiaj — 1.

@ ¢’-coupling, and in particular, Neumann and anti-Kirchhoff conditions;
corresponding to the choice of U =1 — ﬁj.
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Vertex coupling of a preferred-orientation
@ introduced by Exner and Tater

@ P. Exner and M. Tater, Quantum graphs with vertices of a preferred orientation,
Phys. Lett. A 382 (2018).
@ motivated by the application to model the anomalous Hall effect

@ the coupling matrix

0 10 0 0
0 01 0 0
U=+R:=|: : :
0 0O 01
1 0O 0 0
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Vertex coupling of a preferred-orientation

@ introduced by Exner and Tater
@ P. Exner and M. Tater, Quantum graphs with vertices of a preferred orientation,
Phys. Lett. A 382 (2018).
@ motivated by the application to model the anomalous Hall effect

@ the coupling matrix

010 0 0
0 01 0 0
Us+Re=0 00 0 0
000 ... 01
100 ... 00

In the component form, the conditions (R coupling) are

(jr1 =) +1(Dhjs1+ D) =0, j=1,...,n,
for a vertex of degree n where D := % — A
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Asymptotics of the preferred-orientation coupling

The transport properties of the vertex at high energies depend on the
vertex parity; the vertex remains transparent if it is of an even parity, while
for the odd ones, we get an effective decoupling of the edges.
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Asymptotics of the preferred-orientation coupling

The transport properties of the vertex at high energies depend on the
vertex parity; the vertex remains transparent if it is of an even parity, while
for the odd ones, we get an effective decoupling of the edges.

@ Denoting n := 1+Z, a straightforward computation gives [1]

1— 1— N-2 o
S;i(k) = "{ - n%éij (1 - 6y)nli-i-Dimod /v)}’

1— 77N _ 772
in particular,for N = 3,4, we get
—1 g -n 1 P
14y (M7 1 [ —n 1 g
Sy(k)= — "1 =01 |, Sy(k) = ———
3(k) = rE— ( 717 o 4 (k) rprll IR
n 1+n 1 n 772 -n

o We see that limy_,o, S(k) = I if N is odd, while for N even the limit
is different from the unit matrix.

@ [1] P. Exner and M. Tater, Phys. Lett. A 382 (2018).
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Previous results on preferred-orientation coupling:
non-magnetic quantum graphs

Exner, P., and Tater, M., Phys. Lett. A 382 (2018) 283-287.

Exner, P., and Lipovsky, J., J. Math. Phys. 60 (2019), 122101.

Exner, P., and Lipovsky, J., Phys. Lett. A 384 (2020), 126390.

Baradaran, M, Exner, P, and Tater, M, Rev. Math. Phys. 33 (2021), 2060005.
Exner, P, Phys. Part. Nucl. 52 (2021), 330-336.

Exner, P., and Tater, M., Phys. Lett. A 416 (2021) 1276609.

Baradaran, M, and Exner, P, J. Math. Phys. 63 (2022), 083502.

Baradaran, M., Exner, P., and Tater, M., Ann. Phys. 443 (2022), 168992.
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Baradaran, M., and Exner, P., J. Phys. A: Math. Theor. 57 (2024), 265202.

@ spectral properties of different types of lattices and array of loops
@ asymptotic behavior of the spectral bands and transport properties in
the high-energy regime
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Magnetic generalizations of the previously studied
non-magnetic models

@ P. Baradaran, M., Exner, P., and Tater, M., Ann. Phys. 443 (2022), 168992.

@ loosely connected rings (d, = 3): the spectrum is dominated by gaps.

[3  P. Exner and M. Tater, Phys. Lett. A 382 (2018).

Source: the cited paper

@ square lattice (d, = 4): the spectrum is dominated by bands.
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Magnetic ring chains

We consider an array of rings, coupled either tightly or loosely through connecting links,
in a homogeneous magnetic field B = (0,0, B). The magnetic potential is supported on

the loops at which the Hamiltonian acts as 1 — —D?1); where D := & — j A;.

@ loosely connected rings, ¢; # 0 (d, = 3)
@ two limiting cases, /1 =0 or £ =0 (d, = 4)

@ Baradaran, M., Exner, P. and Lipovsky, J., J. Phys. A: Math. Theor. 55 (2022) 375203.
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Magnetic ring chains

We consider an array of rings, coupled either tightly or loosely through connecting links,
in a homogeneous magnetic field B = (0,0, B). The magnetic potential is supported on
the loops at which the Hamiltonian acts as 1 — —D?1); where D := & — j A;.

@ loosely connected rings, ¢; # 0 (d, = 3)
@ two limiting cases, /1 =0 or £ =0 (d, = 4)
@ according to Floquet-Bloch decomposition theorem, we consider an elementary cell
@ for positive energies E = k* > 0, the Ansatz for the solution is
(ajr e 4 a; e’”‘x)ei A%, for negative energies, one replaces k by ik with k> 0
D Baradaran, M., Exner, P. and Lipovsky, J., J. Phys. A: Math. Theor. 55 (2022) 375203.
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To find the spectral condition, the functions have to be matched through
@ the preferred-orientation coupling at each vertex

@ Floquet conditions at the free ends of the cell

Theorem (Baradaran, Exner, Lipovsky, 2022)

@ For A € Z, the spectrum is the same as that for non-magnetic chain.

@ For A — % € 7, depending on ¢;, i = 1,3, flat bands occur at the

energies k* = g% (n — %)2 with g, n € N where g is odd.

@ Away from those flat bands, the spectrum is absolutely continuous
having a band-and-gap structure; it has infinitely many gaps in its
positive part.

@ The negative spectrum consists of a pair of bands which may merge

at particular values of the parameters.
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@ we have the following spectral patterns

o 1 2 3 4 5 o 1 2 s 4 s s

@ the probability of belonging to the spectrum, proposed by Band and
Berkolaiko [1], for graphs with Kirchhoff vertices

Po(H) = Jim ¢ |o(H) N[0, K]

@ [1] R. Band, G. Berkolaiko, Phys. Rev. Lett. 113 (2013).
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The magnetic field influences the probability of the limiting cases only:

@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.

@ Baradaran, M., Exner, P. and Tater, M, Ann. Phys. 443 (2022) 168992.
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The magnetic field influences the probability of the limiting cases only:

Probability

@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, /1 = 0 (d, = 4):

1 2 1 £
Py (H) = 5 +2A—4A° (Amod3) ... fL3#m, égé@
1— L arccos (cos 2An) . ba=m7
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Baradaran, M., Exner, P. and Tater, M, Ann. Phys. 443 (2022) 168992.
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The magnetic field influences the probability of the limiting cases only:
@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, /1 = 0 (d, = 4):

1 1 [4
$4+2A—4A%2 (Amod3) ... L3#m, éé@
PoH) =42
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@ the limiting case when /3 = 0 (d, = 4) and /1 ¢ 27Q: P,(H) = 3.

@ Baradaran, M., Exner, P. and Tater, M, Ann. Phys. 443 (2022) 168992.
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The magnetic field influences the probability of the limiting cases only:
@ loosely connected rings, ¢; # 0 (d, = 3): P,(H) =0.
@ tightly connected rings, /1 = 0 (d, = 4):
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@ the limiting case when /3 = 0 (d, = 4) and /1 ¢ 27Q: P,(H) = 3
The Band—Berkolaiko universality holds whenever the edges are incommensurate.

@ Baradaran, M., Exner, P. and Tater, M, Ann. Phys. 443 (2022) 168992.
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Square lattice in a magnetic field B = (0,0, B)
@ the flux per plaquette ® = gd)o with coprime ¢ > 2 and p=1,2,...,9 — 1;
the magnetic unit cell consists of g plaquettes

@ we use the Landau gauge A = B(0, x,0) for the magnetic potential

. 2 .
@ on the horizontal edges,the operator acts as —%; the solutions are

combinations of etkx

. N2 .
@ on the vertical edges, we have —D? := —(% — IVB) where v =1,2,...,q is
the vertex index; the solutions are linear combinations of e™BY eTiky

T
@ Baradaran, M., Exner, P. and Lipovsky, J., Ann. Phys. 454 (2023) 169339.
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The spectral condition is determined by solving a system of 4q linear equations.

@ band spectrum for ® =7 (¢ =2 and p =1)

2 0 ; 1‘0 1‘5 2‘0
K k
e pairs of wide bands determined by the condition —1 < cos2k <0

e pairs of narrow bands in the vicinity of the roots of sin k of the width
AE,p=2(v2—-1)+0O(n"2) and AE,, =4+ O(n2)
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The spectral condition is determined by solving a system of 4q linear equations.

@ band spectrum for ® =7 (¢ =2 and p =1)

2 0 ; 1‘0 1‘5 2‘0
K k
e pairs of wide bands determined by the condition —1 < cos2k <0

e pairs of narrow bands in the vicinity of the roots of sin k of the width
AE,p=2(v2—-1)+0O(n"2) and AE,, =4+ O(n2)

@ band spectrum for ® =275 (g=3 and p=1,2).

2t | — W 11 mE (| P mE || FES || EESE | Im§E | EmE |

1’1- [} n 11 | Em % || EEm 3 | EmE EmE | EmE | EmE |

2 0 5 10 15 20

K k
e series of ‘three’ wide bands determined by the condition
—1< —3cos (k+ 2%") — 3cos (k — 2’%") —9cosk —4cos3k <1
e series of ‘three’ narrow bands with asymptotically constant width
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@ band spectrum vs. the flux ratio Q% = g with g € {2,...,12} and p=1,...,q—1

@ At low energies, the effect of the vertex condition is dominant.

@ in the high-energy regime, it is the magnetic field which dominates restoring
asymptotically the familiar Hofstadter's butterfly pattern (or the solution of the
almost Mathieu equation)

@ there are series of narrow bands, appearing between each pair of butterflies, with
asymptotically constant width
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Figure: The asymptotic shape of the butterfly part of the spectrum. At the top
and bottom, the spectral bands of the non-magnetic case are shown.
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the probability of belonging to the spectrum, Py (H) := limk— oo = [o(H) N[0, K]|

Probability

0.‘0 U‘.Z 0.‘4 016 0.‘8
P
Dy
Figure: The probability P,(H) versus the flux ratio dTo = Z with g € {2,...,12}

and p=1,...,q—1.

@ with increasing g, the number of bands increases while the probability
quantity decreases: the spectrum could be fractal, in fact a Cantor
set, for irrational flux ratios
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@ we compare the obtained probabilities with the Thouless conjecture
for the almost Mathieu operator

lim glo(® = 27r§)| _ 10Cca

q—o0 ™

where Ceag = > en(—1)"(2n +1)72 ~ 0.9159...

1.0F « 1|
08l 1
06l . ]
A ACcat
04 . . 4 * “rq
0.2 A . ' A A . L . ]
' e A S N i R Oty - Fl)
0.0 1 1 1 1 =)
0.0 02 04 06 08 1.0
[0))
@

Figure: Comparison of P,(H) to the Thouless conjecture values indicated

by the red diamonds.
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A recent modification of the model: Cairo lattice example

@ Baradaran, M., Exner, P.,
J. Phys. A: Math. Theor.
57 (2024) 265202.

@ we consider a Cairo lattice with the edges lengths a and b= (v/3 — 1)a

@ choosing U = £R, the coupling conditions are

(Y1 F W) + ila, (Fja +4j) =0, dy=3,4
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A recent modification of the model: Cairo lattice example

@ Baradaran, M., Exner, P.,
J. Phys. A: Math. Theor.
57 (2024) 265202.

we consider a Cairo lattice with the edges lengths a and b = (v/3 — 1)a

choosing U = +R, the coupling conditions are

(Y1 F W) + ila, (Fja +4j) =0, dy=3,4

R coupling at all vertices results in P(,(Hgf?h) =0 for any 3,04 >0 J

the limit /3 — 0, changes the R coupling to the Kirchhoff one; PJ(H({Z) ~ 0.82

imposing R at d, = 4 and —R at d, = 3, again, we get PJ(HZ;’ZA) ~ 0.82
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27~ 27
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0- L oF '
0 e 2n 0 b 2m
X
(a) the model with R coupling in (b) the model with (=1)% R
the limit 43 — 0 coupling

Figure 1: The grey shaded area equals to 47° P, (H); the axes correspond to x := /3 ka
and y := ka in the high-energy regime k — oc.

This conclusion is not only numerical; we see that the asymptotic
conditions giving rise to these regions are obtained one from the other
through the transformations x <+ x + 7 and y <+ y — 7.

@ Baradaran, M., Exner, P., J. Phys. A: Math. Theor. 57 (2024) 265202.
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Thank you for your attention!
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