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Outline

We construct integrable Hamiltonian systems with magnetic fields
of the ellipsoidal, paraboloidal and conical type, i.e. systems that
generalize natural Hamiltonians separating in the respective
coordinate systems to include nonvanishing magnetic field. In the
ellipsoidal and paraboloidal case each this classification results in
three one-parameter families of systems, each involving one
arbitrary function of a single variable and a parameter specifying
the strength of the magnetic field of the given fully determined
form. In the conical case the results are more involved, there are
two one-parameter families like in the other cases and one class
which is less restrictive and so far resists full classification.
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Formulation of the problem

Let us consider the Hamiltonian system in the three—dimensional
Euclidean space of the form

B R N A o w
H=3Sp+AR) P+ V(E) = 5"+ W), §'=p+AKX

and its integrals of motion polynomial in the momenta. The
leading order terms of such an integral must belong to a
representation of the universal enveloping algebra LI(e3) of the
Euclidean algebra ¢3 = span{p1, p2, p3, 1, b, 3} such that

3
p-T=> pili=0 (2)
=1

between the linear momenta g = (p1, p2, p3) and the angular
momenta r: (/1, b, /3), /J = Zk,lejklxkp/' holds. (I.e. the
quadratic Casimir invariant p- I of ¢3 vanishes in the
representations relevant for our physical application.
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Formulation of the problem

Restricting ourself to the most tractable situation of quadratic
integrals of motion we are looking for pairs of commuting
quadratic elements in £(e3) which obviously also commute with
the quadratic Casimir invariant h = p% = Zj pf of e3 and together
with it may define leading order terms of a triple of commuting
integrals of motion (including the Hamiltonian).
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Formulation of the problem

Restricting ourself to the most tractable situation of quadratic
integrals of motion we are looking for pairs of commuting
quadratic elements in £(e3) which obviously also commute with
the quadratic Casimir invariant h = p% = Zj pf of e3 and together
with it may define leading order terms of a triple of commuting
integrals of motion (including the Hamiltonian). Algebraically,
these were classified in A. Marchesiello and L. Snobl, J. Phys. A:
Math. Theor. 55 (2022) 145203. In a series of follow up papers,
we were looking for integrable systems with integrals with those
leading order terms. It turns out that more general leading order
terms may occur in the case with vector potential compared to the
separable scalar case of Makarov, Smorodinsky, Valiev and
Winternitz. Nuovo Cimento A Series 10, 52:1061-1084, 1967.
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Classification: quadratic 3D Abelian subalgebras in 4((e3) |

Let us briefly summarize the possible structures of those leading
order terms and show for which classes the existence of systems
with generalized form of their integrals was by now studied and
with what conclusion (includes both published results and ones
submitted for publication). In the following list the blue classes
have been showed to possess generalized systems, the red ones do
not, green do not allow any generalized structures already by their
algebraic structure, black we didn't yet conclude.
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Classification: quadratic 3D Abelian subalgebras in $i(e3)

Xi= B+ B +5+abps +bp3, Xo=1,
Xi =K+
Xi =B+ B+ B +2b(hps — (3a—1)hps — 2kps) + 3b%((1 — 4a)p? —

(38> —2a—1)p3 +2(a—1)p3), Xo = al? + 2 4 6ablp1 +9ab*(ap3 + p3),

Xi=185, Xo=21(hp2+ p2h — bpr — pih) + alsps,

3+ b(aps 4+ p3), Xo = als + 5 — abpt,

A &8

X1 = B+2a(hpi—hp2)+a’ps, Xo = 3 (hp2 + p2h — kpr — prh)—apipz,
X1 = 5 + akps + bpi + cpips + dpops,  Xo = p3,

Xi = +ap3, Xo=lhps+ bp3,

Xi = hpi + abp: — (a+ 1)hps + bp3,  Xo = pi + 2 p3,

X1 = hp1 + ap5 + bpaps,  Xo = pi,

X1 =hp1 + abpy — (3 + 1)/3P3 + % (hps + psh — /3P1 p1h) + 2bpipo +

c(p5—p3), Xo=pi+ 25 p1ps + 22 p5 — 22 p3,

SEEEQEE

=

X1 =pi+ap5, Xo=p5+bpip+ cpips + dpaps.
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Ellipsoidal, paraboloidal and conical classes

In the rest of this talk let us focus on the classes (b) and (e), i.e.
the integrals of ellipsoidal, conical (together forming class (b)) and
paraboloidal type class (e) , cf. F. Hoque, AM and LS, J. Phys. A
57 (2024) 225201. We find it convenient rotate our reference
frame to work with the integrals of the form IX, X and XI of
Makarov et al.
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Ellipsoidal, paraboloidal and conical classes

In the rest of this talk let us focus on the classes (b) and (e), i.e.
the integrals of ellipsoidal, conical (together forming class (b)) and
paraboloidal type class (e) , cf. F. Hoque, AM and LS, J. Phys. A
57 (2024) 225201. We find it convenient rotate our reference
frame to work with the integrals of the form IX, X and XI of
Makarov et al.

IX Conical X1:112—|—I22+I32+...,
Xo=b2B+c22+..., c>b>0.

X Ellipsoidal
X1= 13+ B+ 5+ (a%+ b*)pl + a°p3 + b°p3 + ...,
Xo = b3 + %13 + 22b?p? +...,b>a>0.

XI Paraboloidal
X1 = /§+a(/1p2 + poh)—b(hp1 + p1/2)—abp§+. .
Xo = (hp2 + p2h — bpy — p1h) — a(p3 + p3) —
b(p?+p3)+..., b>a>0.
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Ellipsoidal, paraboloidal and conical classes

Without magnetic fields these forms of the commuting integrals
imply separation in the respective orthogonal coordinate system.
We find it convenient to use these curvilinear coordinates also in
the presence of magnetic field, which we interpret as a 2—form, i.e.

B = BX(X)dy Adz + BY(xX)dz Adx + B*(X)dx Ady (=dA) (3)

and similarly in any curvilinear coordinate system, e.g. in the
ellipsoidal one

B = B*(s, t,u)dt Adu+B*(s, t, u)duAds+ B"(s, t, u)dsAdt. (4)
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Ellipsoidal class

Let us start by considering the ellipsoidal case, i.e. X. The
ellipsoidal coordinates are defined by

2 (s—a%)(t—a%)(a® —u) s (s — b)) (B> — t)(b* — u) > stu
= 2(b2 — 22) Y B (b2 — 22) 4 T

where s > b2 >t > a2 > u > 0.
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Ellipsoidal class

Let us start by considering the ellipsoidal case, i.e. X. The
ellipsoidal coordinates are defined by

2 (s—a%)(t—a%)(a® —u) s (s — b)) (B> — t)(b* — u) > stu
= 2(b2 — 22) Y B (b2 — 22) 4 T

where s > b2 >t > a2 > u > 0.

In these coordinates, our Hamiltonian (1) reads

_2s(s — a%)(s — b?) ( A)z N 2t(t — 22)(b? — t) ( A>2

(s —t)(s — u) g (s —t)(t—u) t
2u(a? — u)(b? — u) 2
Py () Wit (6)
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Ellipsoidal class

and the integrals take the form

_ 4s(s— b?)(s — a®)(t + u) 4t(b? — t)(t — a%)(s + v)
Xl— (S—t)(S—U) (ps )2+ (s—t)(t—u) (pf)2

4u(b? — u)(a® — u)(s + t) .
P e W 2 s tamt ms ),
(7)
 dstu(s — b?)(s — a?) astu(b? — t)(t — 2%)
%= (s —t)(s—u) (P5)° + (s—t)(t—u) (p')?
astu(b? — u)(2 — u) i
(s — u)(t— ) (Pf)2+a;,u52 (s, t,u)p2 + my(s, t, u).
(8)
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Ellipsoidal class

In order to classify all new integrable systems allowing integrals of
motion of the form (7) and (8), we have to solve the involutivity
conditions of the Hamiltonian and the integrals of motion, that is,

{H. Xi}p.g. ={H, Xo}p.g. = {X1, Xo}p.B. =0, (9)

expressed in the elliptic coordinates. Notice that the momenta
Px, Py, Pz transform to ps, ps, p, so that we have again Darboux
coordinates, i.e.
OF 0G  0G OF
F,.G = —_— . 10
{F.6)ps = D, da Opy O Opa (10)

a=s,t,u

We first consider the leading order, i.e. quadratic, determining
equations coming from {H, X1}p 5. = 0:
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Ellipsoidal class

asf = ! 4 u)s® u— b%)a
s 72(5 — b2)(s — a2)(s — u)(s — t)s ((s 2t + s+ (e 4 &)

2

+(t+ u)b2 + 3tu)s2 — 2sl‘u(a2 + b2) +a° bztu)sf

+Hs = B)(s — a)s((s — wsf + (s — B)st)) |

Bs; o (s= b?)(s — a%)s Ost 5 o u

ot (s — u)(b? — 0)(t — )t <(" T )5 BT (e = )BT |,

Bs; B (s — B)(s — a%)s Osy' 5 5 .

2 7m ((t — U)E — 8u(a® — u)(b” —u)B" |, (11)
osf L 4 3 > 2

Bt T 2B — )t — )t — u)(s — 0t (=€ 26+ e+ (s =)

—(s+ u)b2 - Z'}us)t2 + 25).‘u(a2 + b2) - 32b25u)s{ —(t— az)(b2 — t)t((u — t)s]

+(s = t)s1))

dsp _ (t— )b — o)t st 2 2 s
oy =T m (S_U)E +8u(a® — u)(b® — u)B” |,
sy 1

TR ey r— ((u“ —2s + t)u® + (s + t — b%)a°

+(s+ t‘)b2 + 3st)u2 — 251.‘u(a2 + b2) + 32b25t)51“ —(u— 32)(u — bz)u((t — u)sy
+(s — u)s}))
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Ellipsoidal class

and similarly from the other two Poisson brackets. The general
solution of all the leading order equations can be found, depends
on three integration constants s5, 55, s319 and reads

Ellipsoidal, paraboloidal and conical integrable systems



Ellipsoidal class

s 7Mu,/2,2,t7 — 2) (k2 —
s1(s, t, u) 7(5 TR W (5210(5 t)4/ tu(a u)(b u) 4 sy(s — u)ty/(t — a2)(b )) s

— 32)(p2 —
% (5520(5 — t)\/u(a? — u)(b2 — u) + séo(t — u)y/s(s — a?)(s — b2)) s

(s, t, u) :% <s2"w(u — t)sy/t(s — a2)(s — b2) + shho(u — s)ty/s(t — a2)(b2 — t)) ,
— 32 — b2
s5(s, t, u) :% (s;m(s — t)y/tu(b? — u)(a® — u) + sztou(s — u)y/(t — a?)(b?2 — t)) s

szr(s, t, u) :% (55205(5 — t)y\/u(b? — u)(a? — u) + sztou(t — u)y/s(s — a?)(s — b2)) R
(st u) =% (stho(u = 0y/t(s = #)(s = ) + oot — 9)/le — a2)(52 — 1))

(12)

si(s, t,u) =

and similarly B®, B, BY determined as functions of the
coordinates s, t, u and the parameters s}, s35q, S50
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Ellipsoidal class

Proceeding with lower order terms in the involutivity conditions
one finds from the commutativity {X1, Xo}p.g. = 0 at the first
order level the conditions

sy sy Osy! sy sy osf!
—s{"—2 +52t—1+s;—1 —s{—z - f—2+s§ 1 =0,
ou ot du ot ds Os
9s5 Osj s} sy 9s5 Os5
s 9% s 951 t 951 u 951 t 952 u 952
—s— +s— +s— + — 5 — —s5 — =0, 13
Tas "2 s T2 T2 T Vo T au 3)
Ost dst st Bst dsh st
s Y22 s 1 t 1 u “71 t “22 u 2
—s]— +S5— +5— +s5 — — 55— — 5 — =0,
Tos 28 2o TP au Yar tau

which depend only on the functions s{'(s, t, u) and s$(s, t, u),
a = s, t,u. Plugging (12) into (13) we arrive at complicated
expressions that must vanish for all values of s, t, v and do not
involve any arbitrary functions.
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Ellipsoidal class

Isolating functionally independent terms in these and solving for
vanishing coefficients, we find a set of algebraic equations whose
solution implies that two of the three integration constants in (12)
must vanish and lead to three very similar, however due to different
ranges on the coordinates s, t, u not equivalent, solutions:

(1) 5310 =0, 30 =0;
(ii) s3=0, s30=0;
(iif) shy =0, skhy=0.
Proceeding with the remaining lower order determining equations
in each case, we arrive at the general solution of our problem, i.e.

at the list of all quadratically integrable Hamiltonian systems with
vector potential with integrals of the ellipsoidal type.
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Ellipsoidal class

In the absence of the magnetic field the assumption of the
existence of the pair of commuting integrals (7) and (8) implies
that potential must have the separable form

(t —u)f(s)+ (s — u)g(t)+ (s — t)h(u)
(s = 0)(t — u)(s — ) - 19

In the presence of the magnetic field the assumption of the
existence of the pair of commuting integrals (7) and (8) implies
three possibilities, each having one of the arbitrary functions
from (14) and one parameter ([ below) determining the strength
of the magnetic field.

W(s,t,u) =
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Ellipsoidal class

(t—u) (s + (e + u— 222 — 26%)5% +3(2267 — tw)s? + (222 + B)tu — 22B2(¢ + u))s — 2bPu)
16(s — u)2(s — t)2/tu(t — a2)(b% — t)(b? — u)(a? — u)
B(s,t,u) = tu(t — a?)(b2 — t) 5
o 8u\/(22 — u)(b2 — u)(s — t)2

u(b? — u)(a? — u)

)

B®(s, t,u) =

BY(s, t,u) = — B,
8(s — u)2\/t(t — a?)(b2 — t)
2 2
Wty ) s(s = s — ) )

(s —u)(s—t) 32(s — u)?(s — t)2
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Ellipsoidal class

B(s, b, u) = su(s — b2)(s — a?) 8,
8u+/(a2 — u)(b2 — u)(s — t)2
(s —u) (—t4 + (222 +2b% — s — u)t3 + 3(su — a?b?)t? + (a®b(s + u) — 2(a® + b?)su)t + azbzsu) B
16(t — u)2(s — t)2y/su(s — a2)(s — b2)(b? — u)(a? — u)
u(b? — u)(a2 — u)
8(t — u)2\/s(s — b%)(s — a2)
£(t) (P = =1
(s —t)(t—u) 32(s — t)2(t — u)?

’

B(s, t,u) =

B (s, t,u) =

’

W(s, t,u) = (16)
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Ellipsoidal class

s(s — a?)(s — b?)
8V/t(t — a?)(b% — 1)(s — u)?
t(t — a?) (b2 — t) 5
8v/s(s — a?)(s — B2)(t — u)?
(s—1t) (u4 — (2a% +2b% — s — t)ud — 3(st — a?b?)u? — (a?B%(s + t) — 2(a° + b?)st)u — 32b25t) B
16(t — u)2(s — u)2/st(s — a2)(s — b2)(t — a2)(b% — t)
h(u) u(B? — w2 —u)
(t—u)(s —u)  32(t — u)2(s — u)?

B°(s, t,u) =

B,

Bf(s, t,u) =

BY(s,t,u) =

W(s, t,u) =

n)
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Paraboloidal class

For the paraboloidal class Xl the results are structurally very
similar to the ellipsoidal case. Let us recall that the paraboloidal
coordinates are defined by

e -2 (=B
b—a ’ b—a ’
z=S(utvHr—a—b), (18)

where u >b>A>a>v>0.
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Paraboloidal class

For the paraboloidal class Xl the results are structurally very
similar to the ellipsoidal case. Let us recall that the paraboloidal
coordinates are defined by

e -2 (=B
b—a ’ b—a ’
z=S(utvHr—a—b), (18)

where u >b>A>a>v>0.

In these coordinates, the Hamiltonian (1) reads

_w( A)2+ 2() — a)(b— ) ( A)2+

Ty P ey B
2@a—v)(b—v) / a2
(D) (Pu) + W(p, v, A), (19)
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Paraboloidal class

and the integrals take the form

_ A(p—a)(p—b) (a2 (A —a)(b—A) [ a\2
Xy = (=) —=A) ( l‘) (n—N)(\—v) (Px) (20)
Axp(a—v)(b—v) 2 N
(- v) (A ) (”5) + a:uz;,fl (ks v, AP+ ma (s, v, ),
_ Mp—a)(p-b) () a2 AA=a) (b= Nkt ) [ a)2
o (=0} = ) (7) (b =N =) ()
Ya—v)(b—v)(p+A) [ a)2 . .
- (p—v)(XA =) (p”) + Q:HZM S5 (1, v, )Pl + ma(p, v, A).
(21)
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Paraboloidal class

In the absence of the magnetic field the assumption of the
existence of the pair of commuting integrals (20) and (21) implies
that potential must have the separable form

O =) () + (= Vg + (1= )hQ)
(=N =) —v) 7

In the presence of the magnetic field the assumption of the
existence of the pair of commuting integrals (20) and (21) again
implies three possibilities, each having one of the arbitrary
functions from (22) and one parameter (/3 below) determining the
strength of the magpnetic field.

W(p, v, \) =
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Paraboloidal class

As they are all formally related by permutation of the coordinates
(however not allowed by the parameter ranges), we shall present
only one of them:

__ () = i
R T VT PR Y e s Vo e A
+((4b+ v+ X)a+ (v + X)b—2\)u + (=2(v + A)b+ Av)a + brd) 5,
3 3 (a—v)(b—v)
BY(p, v, A) T 8(u—v)2\/(b— N — a)b)’
R B (CEDNCED)
B (va’)‘)_S(H_A)Z (b—l/)(a—V)ﬁ’
W, v, 3) = — ) (=2 =b) g (23)

P T 7 TS i
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Conical class

For the conical class IX the derivation is similar, however the
results are structurally somewhat different. The conical coordinates
are defined by

XZL\/(b2—92)(b2—>\2) yzi\/(02—62)(c2—/\2) L _roA (24)

b b2 — 2 ’ c bc

b2 — 2 ’ bc’

where r >0, b2 >0%2>c2>X>0, b>c>0, and the
Hamiltonian reads

H=y (o) + (0% — )b — 0°) (ot) +
2

2r2(62 — \?)

2 2 (b2 — )2
2r2>(\gg(f )\2))\ ) (pﬁ‘)z + W(r.6,)). (25)
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Conical class

In the absence of the magnetic field the assumption of the
existence of the conical pair of commuting integrals of the form IX
implies that potential must have the separable form

g(0) + h(N)

W(r,9,)\):f(r)+m,

(26)
In the presence of the magnetic field we find two possibilities
structurally similar to the ellipsoidal and paraboloidal cases, with
the function g(0) and h()), respectively, and one parameter
determining the strength of the magnetic field, for example

Ellipsoidal, paraboloidal and conical integrable systems



Conical class

) A
B(r,g,)\) r\/ 2 _ 92762)/3
_ OB — ) (02 = )
BU(r 0.0 =" e "
A (3N = 2B+ )02 4 b2P(02 + N?) - X°)
Br.6.2) = N e = B
Wby =IO (e =) - N) (27)

2r2(62 — X?2) 8r4(62 — \2)2
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Conical class

However, there is another possibility, for which only partial
separation

W2(9’ )‘)
r2

W(r,0,\) = wi(r)+ (28)

of the potential is accomplished, and the solution depends on the
solution of one PDE coming from the leading order conditions,
namely

?PSh 1
200X — (62 — N2)2

089
((94 P evs&) . (29)

where SY;(6,\) is a yet to be determined part of the function
s5(r,0, ).
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Conical class

Explicit examples of systems of this form were found by symmetry
reduction of (29),

)\2 _ 92
2\/(b? = 62)(62 — c2)(c? — A2)(b2 — M2)
B%(r,0,\) =0, Br,0,)\) =0, W(r,0,))=wi(r) (30)

Br(rae’ )‘) = K4,

and
, B (b2 4 c2 — 3(0%2 + N2)) (67 — \?)
Y e G CEpe i
B(r,0,)) =0, B*(r,0,\) =0, (31)

(02 =X)? w

W(r,0,0) =wn(r) + g () — o
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Conclusions

We discussed integrable systems of ellipsoidal, paraboloidal and
conical type. We have seen that for ellipsoidal and paraboloidal
integrals, there are one—parameter families, each involving one of
the arbitrary functions in the separated potential in the absence
magnetic field.
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Conclusions

We discussed integrable systems of ellipsoidal, paraboloidal and
conical type. We have seen that for ellipsoidal and paraboloidal
integrals, there are one—parameter families, each involving one of
the arbitrary functions in the separated potential in the absence
magnetic field.

In the conical case the situation is more complicated and in one
branch the computation did not lead to a full classification.
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Conclusions

We discussed integrable systems of ellipsoidal, paraboloidal and
conical type. We have seen that for ellipsoidal and paraboloidal
integrals, there are one—parameter families, each involving one of
the arbitrary functions in the separated potential in the absence
magnetic field.

In the conical case the situation is more complicated and in one
branch the computation did not lead to a full classification.

One of the open problems is how to rewrite the magnetic fields of
these integrable systems in the Cartesian coordinates, as the
inversion of the transformation between these curvilinear
coordinates and the Cartesian ones is not known. We tried to
guess the corresponding form of the magnetic field but without any
success.
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Conclusions

The above mentioned difficulty in expressing the resulting systems
in the Cartesian coordinates also implies that search for
hypothetical superintegrability of the constructed integrable
systems is a very complicated task. Expressing the hypothetical
additional integral X3 of the general form in the respective
curvilinear coordinates and computing the Poisson bracket

{H, X3}p.g., one arrives at very cumbersome conditions which
seem to be rather impossible to analyze. At the same time, it is
impossible to express these conditions in the Cartesian coordinates
since the magnetic field and the potential are not known in those.
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Thank you for your attention!
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