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In constructing multiparticle states, the permutation group is often
essential.

The combination of two spin—% systems gives:

one antisymmetric singlet S = 0 and

one symmetric triplet S = 1.

The permutation symmetry uniquely identifies S when taking multiple
copies of spin-1/2 states.

In combining single-particle harmonic oscillator states of the same parity
(su(1,1) ~ sp(2,R) states), the permutation group is not enough.
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Construct some many-particle sp(4, R) states “easily”
have an idea of where the permutation symmetry is hiding.
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u(1,1) oscillator states

The su(1,1) ~ sp(2,R) operators satisfy
(Ko, K] = +K, Ky, K] =—Ko.

(One particle) oscillator representation:

Ky =

afat, K =1laa, Ko=1(ata+1)

N[
N[

The bottom state |0) satisfies:
K_|0) =0

Natural for boson systems
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Where do bosons actually belong?
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Combining two su(1,1) systems

Ko=}(@d+a8), K=K, Ko=3}(ala+ala,+1)

All states in a tower have the same permutation symmetry.
There are infinitely many towers of symmetric states.

— |4)|0>+\/§|2)|2>+|0>I4> — 9I0) - 10)}4) — |4)[0) — V6]2)[2) + |0)]4)
— [2)|0) + [0)[2) — 12)[0) —10)[2)

— 0)|0)

Clearly permutation symmetry is not enough to identify the tower of states.
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The 3 bottom states satisfy
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0,
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~t

A, _9_ . 0’
ai = 5., aj = x5 = K_— Xz"'axz

The bottom states map to polynomials:
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The Laplacian approach

Write

ot

ai > > alesx = Ko 242
1 oxi j ) ox? axz

The bottom states map to polynomials:
|0)|0) — fo =1,
12)10) —10)[2) — f, = x§ —x3,
14)]0) — v/6[2)[2) 4 10)[4) > £, = X} — 6x3x3 + x5

Now we have
K_f, — V2 =0

The fy are two-dimensional harmonic functions.
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The Laplacian approach

Solutions fy have a generating function:
Hy (x1,%2) = ePat)he 5 1 4 hy(x +ix,) + W32 (x1 +i%2)% + ...

In the expansion of H; (x1, x,), distinct powers of h, give distinct functions
fi that satisfy V2f,. = 0.

Only even numbers of excitations are possible so even powers of x; or x,
must be kept:

1 1
1+ Ehg(xf —x3) + ﬂhé'(x‘l‘ —6X3%5 +X3) + ...
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The Laplacian approach

For three particles:

2 32 32
@ 2

2_ 2 D —_— =
V= X3  0x3 X3

There’s also a generating function for the solutions to this.
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Connection with spherical harmonics

Again keeping only terms in even powers of x;:
14303 —x3) + 504 + x5 —2x3)
Thus:
0)[0}I0),  12)[0)[0) —10)[2)[0),  [2)|0)[0) +[0)[2)[0) — 2/0)|0)/2)

are all at the bottom of separate 3-particle towers.
of course

(Y, 2(0, @) + Y3(0,0)) ~ X} — 3

Y3(0, @) ~ x2 + x5 — 2x3

There is in fact a symmetry to the solutions: angular momentum plus parity.



Three particles and O(3)

For 3 particles we have:
Ky =1 (alal+aza2+a3a3) , K,:KL,

Ko = (a101+a2a2+a3a3+ )

N
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Three particles and O(3)

For 3 particles we have:
Ko=1 (alas+afa +alas +3)

Introduce

Of course [[, [i] = tejiele
Also [f_j, Kql =0.
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Three particles and O(3)

Thus, all states in a tower are also "good angular momentum states", i.e.
they have good quantum numbers £ and [m/|.

Because of parity, states are combo of |m| states with m even.
Recall

i i i 2.2, .2 _ 2
Ky =dlal +alal + ala] XX+ XS =T

The states |[{, m;n) in { = 0, m = 0 tower:

Y3(0,¢9)=1 ~ [0)|0)[0) = |00;0)
2Y3(0,0) =x2 +x3 +x3  ~[2)[0)[0) +10)[2)|0) +10)|0)[2) = |00;2)

™Y2(0, @) = (x2 +x3 +x3)? = |00; 4)



Three particles and O(3)

The { = 4, m = 0 tower are built on:

1Y3(6, 0) ~ 140;4) = [4)0)[0) + ,/312)12)10) — 41/212)10}12) + $[0)I0)}4)




Three particles and O(3)

The { = 4, m = 0 tower are built on:

TY3(0, @) ~ 140;4) = 14)[0)/0) + 1 /212)12)10) — 4,/212) 0)12) + 3I0}I0) 14)
We also have { = 4,|m| = 2 and |m| = 4 towers built on:

T (Y2(0, @) + Y, 2(0, @)) ~ [42;4) ~ 4)[0)]0) — V/6/2) 0)2)
—10)[4)[0) + v/6|0)[2)[2)
(Y200, 0) + Y, (6, @) ~ [44;4) ~ 4)[0)[0) — V/6/2) 2)|0) + [0)]4)[0)




Where did the permutation symmetry go?



Where did the permutation symmetry go?

The combination |40;4) + §|44;4) is proportional to

|0)10)14) +10)[4)[0) + |4)|0)|0) — \/§ (12)12)I0) +12)10)[2) +10)[2)12))

and is fully symmetric, like the |00; 0) state.



Where did the permutation symmetry go?

The combination |40;4) + §|44;4) is proportional to

|0)10)14) +10)[4)[0) + |4)|0)|0) — \/§ (12)12)I0) +12)10)[2) +10)[2)12))

and is fully symmetric, like the |00; 0) state.
There are two remaining states with are partially symmetric.



Where did the permutation symmetry go?

The combination |40;4) + §|44;4) is proportional to

|0)10)14) +10)[4)[0) + |4)|0)|0) — \/§ (12)12)I0) +12)10)[2) +10)[2)12))

and is fully symmetric, like the |00; 0) state.

There are two remaining states with are partially symmetric.
One goes to a linear combination of the other two under permutation.



Where did the permutation symmetry go?

The combination |40;4) + §|44;4) is proportional to

|0)10)14) +10)[4)[0) + |4)|0)|0) — \/§ (12)12)I0) +12)10)[2) +10)[2)12))

and is fully symmetric, like the |00; 0) state.

There are two remaining states with are partially symmetric.
One goes to a linear combination of the other two under permutation.

The permutation group appears as a subgroup of O(3):



Where did the permutation symmetry go?

The combination |40;4) + §|44;4) is proportional to

|0)10)14) +10)[4)[0) + |4)|0)|0) — \/§ (12)12)I0) +12)10)[2) +10)[2)12))

and is fully symmetric, like the |00; 0) state.

There are two remaining states with are partially symmetric.
One goes to a linear combination of the other two under permutation.

The permutation group appears as a subgroup of O(3):

P12=(

o = O
O O =
= O O

) is an orthogonal matrix: P, = P;}!
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More than 3 particles

The strategy works for d > 3 particles but...
The generating function becomes complicated.
Other methods use hyperspherical coordinates.
Tensor operator methods
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We have the generators
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Bi]-:aia]-, i:1,2.
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We have the generators

Ay = ald], i=1,2,

Cij =3 aiaj+aja1), i=1,2,

By = aiqj, i=1,2.
The set

Cij:%(aiaj—&-ajaI) , i=1,2,

span au(2) subalgebra.

The operators {A11, A1, Ay} transform under the w(2) as states in the 1(2)
irrep (2,0).

As per su(1, 1), the idea is to start from the bottom of the tower and
repeated act with powers of the Ay;:

AiAre € [(2,0) ® (2,0)]5mm

Because Ai;’s commute only the symmetric part of the tensor product is
needed.
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Irreps of sp(4, R)

The symmetric part of the repeated coupling of (2, 0) irreps contains states
inthe w(2) irreps

D = (00) + (20) + (40) + (22) + (60) + (42) + (22) + ...

the sum is over partitions of even integers having even-only parts.
These must in turn be coupled to the bottom state of each tower.

For single particles irrep of sp(4, R) this bottom state is carries the (0, 0)
irrep so D lists the 1(2) contents of the single particle irrep.

J. Phys. A: Math. Gen. 18 (1985) 939-953. Printed in Great Britain

Unitary representations, branching rules and matrix elements
for the non-compact symplectic groups

D J Rowet, B G Wybourne and P H Butler
Physics Department, University of Canterbury, Christchurch 1, New Zealand
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Two-particle irreps of sp(4, R)

We now have

2
_ T4t
Ay = Z Qi Gy

k=1
2
Cy=) 3 (afaaki + afa) ;
k=1
By =Al.
The lowering operators
02 0?
B — + 55>
oxf;  Oxg
02 0?
By — + R
12 axllaxlz aleaXn
02 0?

By = — + —
2 7 °
L 0xy



Two-particle irreps of sp(4, R)

Not so easy to find the functions f simultaneously solutions to

0?2 0?2
e + A, f = 0 )
(axil aX%l)
02 02
f=0
(axnaxu + aleaX22>

02 02
— | f
(aXﬁ ax%2>

0.



Two-particle irreps of sp(4, R)

Use O(2) by constructing the tensors
T = % (a]lLl *iagl) , Vi= % (aiz *iagz) .

al : particle number i, mode number «.
Note that Clarify what is L12
(L1, T = +1T, [Li, VY] = +1V*
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Use O(2) by constructing the tensors
T = % (a]lLl *ia;) , Vi= % (aiz *iagz) .

al : particle number i, mode number «.
Note that
Lo, T = +1T",  [Lpp, VY =41V}
It appears all lowest sp(4, R) states for 2 particles irreps are of the form
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Two-particle irreps of sp(4, R)
Use O(2) by constructing the tensors

1_1 T st 1_1 i st
=3 (‘111*1021): Vi=3 (012*1022)'

al : particle number i, mode number «.
Note that
(L1, TH = +1T4, L, VY = +1V!
It appears all lowest sp(4, R) states for 2 particles irreps are of the form
T2M00)[00) ~ VZMoo)joo) ~  VZ*T2("—K)|00)|00)
Example: [m| = 4 irrep has lowest state
X1, — 6x31%5;, + X5, ~ [40)[00) — v/6/20)|20) + |00)|40)

Compare the su(1, 1) states at the bottom of |m/| = 4:

X7 — 6x3x3 + %5 ~ 4)[0) — V/6[2)[2) + |0)|4)



Three-particle irreps of sp(4,R)

We now have

T4t
A Ay

>
I
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Three-particle irreps of sp(4,R)

We now have

3
_ Pt
Ay = Z A Ay
k=1
3
Cy=) 3 (afaakj + afa) )
k=1
B.. = Al
Y ij *

Use O(3) by constructing the tensors TL, and VL;:

1 1
\/i 31> 2

1 . 1 1 .

Vil = _E ((112 I 1(1;2) ) Vg = —ﬁazz ) V% = E ((11[2 — 1C1J2[2) o

1 .
Til =73 (aJlrl + 1‘1;1) ) Tol =
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Three-particle irreps of sp(4,R)

Not all lowest sp(4, R) states for 3 particles irreps are of the form
T2™|00)|00)
Some are: L = 2,|m| = 0irrep has lowest state
X3, + x5, — 2x3; ~ 20)/00)|00) + [00)[20)|00) — 2|00)|00)|20)
Compare the su(1,1) states at the bottom of L = 2, |m| = 0:
X3 43 — 2x5 ~ [2)[0)[0) + [0)[2)|0) — 2/0)[0)[2)

Some aren’t:

2., 2
m’ m’

mm’

3 )T2,V2,.100) 00) 00)
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Not all lowest sp(4, R) states for 3 particles irreps are of the form
T2™|00)|00)
Some are: L = 2,|m| = 0irrep has lowest state
X3, + x5, — 2x3; ~ 20)/00)|00) + [00)[20)|00) — 2|00)|00)|20)
Compare the su(1,1) states at the bottom of L = 2, |m| = 0:
X3 43 — 2x5 ~ [2)[0)[0) + [0)[2)|0) — 2/0)[0)[2)

Some aren’t:

3 )T2,V2,.100) 00) 00)

2., 2
m’ m’

mm’
T2 and V2 are L = 2 tensors under O(3), and the combo
2, 2
me’ <m’ m’

the antisymmetric space of the decomposition (L = 2) ® (L = 2).

3 H « H ” . . .
2>T§1V,2n, is an “axial tensor” in the sense that it lives in



Three-particle irreps of sp(4,R)

Some don’t exist:

2, 2
m?’ m’

mm’

é>T§1Vﬁ1,\OO>|OO>|OO>

does not yield product states with only even number of excitations for each
particles.

This is because m = 0 irreps of O(2) (as a subgroup of O(3)) must have
even parity but the coupling is antisymmetricin T and V.
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Angular momentum helps in constructing multiple states when combining
degenerate representations of su(1,1).
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Conclusion

Angular momentum helps in constructing multiple states when combining
degenerate representations of su(1,1).

It is also helpful for 2-particle irreps of sp(2k, R).
Some extra care required for n > 3 particles
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