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Context

• In constructing multiparticle states, the permutation group is often
essential.

• The combination of two spin- 1
2 systems gives:

one antisymmetric singlet S = 0 and
one symmetric triplet S = 1.

• The permutation symmetry uniquely identifies S when taking multiple
copies of spin-1/2 states.

• In combining single-particle harmonic oscillator states of the same parity
(su(1, 1) ∼ sp(2,R) states), the permutation group is not enough.
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Promise

• Construct many-particle su(1, 1) states “easily”,

• Construct somemany-particle sp(4,R) states “easily”
• have an idea of where the permutation symmetry is hiding.
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su(1,1) oscillator states

• The su(1, 1) ∼ sp(2,R) operators satisfy

[K0,K±] = ±K± , [K+,K−] = −K0 .

• (One particle) oscillator representation:

K+ = 1
2 â

†â† , K− = 1
2 ââ , K0 = 1

2

(
â†â+ 1

2

)
• The bottom state |0⟩ satisfies:

K−|0⟩ = 0

• Natural for boson systems
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Combining two su(1,1) systems

• K− = 1
2 (â1â1 + â2â2) , K+ = K†

− , K0 = 1
2

(
â†

1â1 + â†
2â2 + 1

)

• All states in a tower have the same permutation symmetry.
• There are infinitely many towers of symmetric states.

• There are infinitely many towers of antisymmetric states.
• Clearly permutation symmetry is not enough to identify the tower of states.
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The Laplacian approach

• The 3 bottom states satisfy

K−|0⟩|0⟩ = 0 ,
K− (|2⟩|0⟩− |0⟩|2⟩) = 0 ,

K−

(
|4⟩|0⟩−

√
6|2⟩|2⟩+ |0⟩|4⟩

)
= 0
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The Laplacian approach

• Write

âi 7→ ∂
∂xi

, â†
j 7→ xj ⇒ K− 7→ ∂2

∂x2
1
+ ∂2

∂x2
2

• The bottom states map to polynomials:

|0⟩|0⟩ 7→ f0 = 1 ,
|2⟩|0⟩− |0⟩|2⟩ 7→ f2 = x2

1 − x2
2 ,

|4⟩|0⟩−
√

6|2⟩|2⟩+ |0⟩|4⟩ 7→ f4 = x4
1 − 6x2

1x
2
2 + x4

2

• Now we have
K−fk 7→ ∇2fk = 0.

• The fk are two-dimensional harmonic functions.
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The Laplacian approach

• Solutions fk have a generating function:

H+
2 (x1, x2) = e(x1+ix2)h2

≈ 1 + h2(x1 + ix2) + h2
2

1
2 (x1 + ix2)

2 + . . .

• In the expansion of H+
2 (x1, x2), distinct powers of h2 give distinct functions

fk that satisfy ∇2fk = 0.
• Only even numbers of excitations are possible so even powers of x1 or x2

must be kept:

1 +
1
2
h2

2(x
2
1 − x2

2) +
1

24
h4

2(x
4
1 − 6x2

1x
2
2 + x4

2) + . . .
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The Laplacian approach

• For three particles:

∇2 =
∂2

∂x2
1
+

∂2

∂x2
2
+

∂2

∂x2
3
= 0.

• There’s also a generating function for the solutions to this.
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Connection with spherical harmonics

• Again keeping only terms in even powers of xi:

1 + 1
2 (x

2
1 − x2

2) +
1
2 (x

2
1 + x2

2 − 2x2
3)

• Thus:

|0⟩|0⟩|0⟩ , |2⟩|0⟩|0⟩− |0⟩|2⟩|0⟩ , |2⟩|0⟩|0⟩+ |0⟩|2⟩|0⟩− 2|0⟩|0⟩|2⟩

are all at the bottom of separate 3-particle towers.
• of course

r2(Y−2
2 (θ,φ) + Y2

2(θ,φ)) ∼ x2
1 − x2

2

r2Y0
2(θ,φ) ∼ x2

1 + x2
2 − 2x2

3

• There is in fact a symmetry to the solutions: angular momentum plus parity.
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Three particles and O(3)

• For 3 particles we have:

K+ = 1
2

(
â†

1â
†
1 + â†

2â
†
2 + â†

3â
†
3

)
, K− = K†

+ ,

K0 = 1
2

(
â†

1â1 + â†
2â2 + â†

3â3 +
3
2

)

• Introduce

L̂12 = i
(
â†

1â2 − â†
2â1

)
→ L̂z , L̂23 = i

(
â†

2â3 − â†
3â2

)
→ L̂x ,

L̂31 = i
(
â†

3â1 − â†
1â3

)
→ L̂y .

• Of course [L̂j, L̂k] = iϵjkℓL̂ℓ

• Also [L̂j,Kq] = 0.
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â†
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3â2
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2â3 − â†
3â2
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Three particles and O(3)

• Thus, all states in a tower are also "good angular momentum states", i.e.
they have good quantum numbers ℓ and |m|.

• Because of parity, states are combo of |m| states with m even.
• Recall

K+ = a†
1a

†
1 + a†

2a
†
2 + a†

3a
†
3

7→ x2
1 + x2

2 + x2
3 = r2

• The states |ℓ,m;n) in ℓ = 0,m = 0 tower:

Y0
0(θ,φ) = 1 ∼ |0⟩|0⟩|0⟩ = |00; 0)

r2Y0
0(θ,φ) = x2

1 + x2
2 + x2

3 ∼ |2⟩|0⟩|0⟩+ |0⟩|2⟩|0⟩+ |0⟩|0⟩|2⟩= |00; 2)

r4Y0
0(θ,φ) = (x2

1 + x2
2 + x2

3)
2 = |00; 4)

12



Three particles and O(3)

• Thus, all states in a tower are also "good angular momentum states", i.e.
they have good quantum numbers ℓ and |m|.

• Because of parity, states are combo of |m| states with m even.

• Recall

K+ = a†
1a

†
1 + a†

2a
†
2 + a†

3a
†
3

7→ x2
1 + x2

2 + x2
3 = r2

• The states |ℓ,m;n) in ℓ = 0,m = 0 tower:

Y0
0(θ,φ) = 1 ∼ |0⟩|0⟩|0⟩ = |00; 0)

r2Y0
0(θ,φ) = x2

1 + x2
2 + x2

3 ∼ |2⟩|0⟩|0⟩+ |0⟩|2⟩|0⟩+ |0⟩|0⟩|2⟩= |00; 2)

r4Y0
0(θ,φ) = (x2

1 + x2
2 + x2

3)
2 = |00; 4)

12



Three particles and O(3)

• Thus, all states in a tower are also "good angular momentum states", i.e.
they have good quantum numbers ℓ and |m|.
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Three particles and O(3)

• The ℓ = 4,m = 0 tower are built on:

r4Y0
4(θ,φ) ∼ |40; 4) = |4⟩|0⟩|0⟩+

√
2
3 |2⟩|2⟩|0⟩− 4

√
2
3 |2⟩|0⟩|2⟩+

8
3 |0⟩|0⟩|4⟩

• We also have ℓ = 4, |m| = 2 and |m| = 4 towers built on:

r4(Y2
4(θ,φ) + Y−2

4 (θ,φ)) ∼ |42; 4) ∼ |4⟩|0⟩|0⟩−
√

6|2⟩|0⟩|2⟩

− |0⟩|4⟩|0⟩+
√

6|0⟩|2⟩|2⟩

r4(Y4
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Where did the permutation symmetry go?

• The combination |40; 4) + 5
3 |44; 4) is proportional to

|0⟩|0⟩|4⟩+ |0⟩|4⟩|0⟩+ |4⟩|0⟩|0⟩−
√

3
2 (|2⟩|2⟩|0⟩+ |2⟩|0⟩|2⟩+ |0⟩|2⟩|2⟩)

and is fully symmetric, like the |00; 0) state.
• There are two remaining states with are partially symmetric.

One goes to a linear combination of the other two under permutation.
• The permutation group appears as a subgroup of O(3):

P12 =

 0 1 0
1 0 0
0 0 1

 is an orthogonal matrix: P⊤
12 = P−1

12

14
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More than 3 particles

• The strategy works for d ⩾ 3 particles but...

◦ The generating function becomes complicated.
◦ Other methods use hyperspherical coordinates.
◦ Tensor operator methods

15
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Single-particle irrep of sp(4,R)
• We have the generators

Aij = a†
ia

†
j , i = 1, 2 ,

Cij =
1
2

(
a†
iaj + aja

†
i

)
, i = 1, 2 ,

Bij = aiaj , i = 1, 2 .

• The set

Cij =
1
2

(
a†
iaj + aja

†
i

)
, i = 1, 2 ,

span a u(2) subalgebra.
• The operators {A11,A12,A22} transform under the u(2) as states in the u(2)

irrep (2, 0).
• As per su(1, 1), the idea is to start from the bottom of the tower and

repeated act with powers of the Aij:

AijAkℓ ∈ [(2, 0)⊗ (2, 0)]symm

• Because Aij’s commute only the symmetric part of the tensor product is
needed.

16
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Irreps of sp(4,R)
• The symmetric part of the repeated coupling of (2, 0) irreps contains states

in the u(2) irreps

D = (00) + (20) + (40) + (22) + (60) + (42) + (22) + . . .

• the sum is over partitions of even integers having even-only parts.
• These must in turn be coupled to the bottom state of each tower.
• For single particles irrep of sp(4,R) this bottom state is carries the (0, 0)

irrep so D lists the u(2) contents of the single particle irrep.
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Two-particle irreps of sp(4,R)
• We now have

Aij =

2∑
k=1

a†
kia

†
kj ,

Cij =

2∑
k=1

1
2

(
a†
kiakj + akja

†
ki

)
,

Bij = A†
ij .

• The lowering operators

B11 7→ ∂2

∂x2
11

+
∂2

∂x2
21

,

B12 7→ ∂2

∂x11∂x12
+

∂2

∂x21∂x22
,

B22 7→ ∂2

∂x2
12

+
∂2

∂x2
22

.
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Two-particle irreps of sp(4,R)

• Not so easy to find the functions f simultaneously solutions to(
∂2

∂x2
11

+
∂2

∂x2
21

)
f = 0 ,(

∂2

∂x11∂x12
+

∂2

∂x21∂x22

)
f = 0(

∂2

∂x2
12

+
∂2

∂x2
22

)
f = 0 .
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Two-particle irreps of sp(4,R)
• Use O(2) by constructing the tensors

T 1 = 1
2

(
a†

11 − ia†
21

)
, V1 = 1

2

(
a†

12 − ia†
22

)
.

a†
iα : particle number i, mode number α.

• Note that

[L12, T 1] = +1T 1 , [L12,V1] = +1V1

• It appears all lowest sp(4,R) states for 2 particles irreps are of the form

T 2n|00⟩|00⟩ ∼ V2n|00⟩|00⟩ ∼ V2kT 2(n−k)|00⟩|00⟩

• Example: |m| = 4 irrep has lowest state

x4
11 − 6x2

11x
2
21 + x4

21 ∼ |40⟩|00⟩−
√

6|20⟩|20⟩+ |00⟩|40⟩

• Compare the su(1, 1) states at the bottom of |m| = 4:

x4
1 − 6x2

1x
2
2 + x4

2 ∼ |4⟩|0⟩−
√

6|2⟩|2⟩+ |0⟩|4⟩

20

Hubert
Clarify what is L12
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Three-particle irreps of sp(4,R)

• We now have

Aij =

3∑
k=1

a†
kia

†
kj ,

Cij =

3∑
k=1

1
2

(
a†
kiakj + akja

†
ki

)
,

Bij = A†
ij .

• Use O(3) by constructing the tensors TL
M and VL

M:

T 1
−1 = −

1
2

(
a†

11 + ia†
21

)
, T 1

0 = −
1√

2
a†

31 , T 1
1 =

1
2

(
a†

11 − ia†
21

)
,

V1
−1 = −

1
2

(
a†

12 + ia†
22

)
, V1

0 = −
1√

2
a†

32 , V1
1 =

1
2

(
a†

12 − ia†
22

)
.
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Three-particle irreps of sp(4,R)

• Not all lowest sp(4,R) states for 3 particles irreps are of the form

T 2n|00⟩|00⟩

• Some are: L = 2, |m| = 0 irrep has lowest state

x2
11 + x2

21 − 2x2
31 ∼ |20⟩|00⟩|00⟩+ |00⟩|20⟩|00⟩− 2|00⟩|00⟩|20⟩

• Compare the su(1, 1) states at the bottom of L = 2, |m| = 0:

x2
1 + x2

2 − 2x2
3 ∼ |2⟩|0⟩|0⟩+ |0⟩|2⟩|0⟩− 2|0⟩|0⟩|2⟩

• Some aren’t: ∑
mm′

〈
2
m

; 2
m′

∣∣ 3
2

〉
T 2
mV2

m′ |00⟩|00⟩|00⟩

• T 2 and V2 are L = 2 tensors under O(3), and the combo∑
mm′

〈
2
m

; 2
m′

∣∣ 3
2

〉
T 2
mV2

m′ is an “axial tensor” in the sense that it lives in
the antisymmetric space of the decomposition (L = 2)⊗ (L = 2).
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Three-particle irreps of sp(4,R)

• Some don’t exist: ∑
mm′

〈
2
m

; 2
m′

∣∣ 1
0

〉
T 2
mV2

m′ |00⟩|00⟩|00⟩

does not yield product states with only even number of excitations for each
particles.

• This is because m = 0 irreps of O(2) (as a subgroup of O(3)) must have
even parity but the coupling is antisymmetric in T and V .
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Conclusion

• Angular momentum helps in constructing multiple states when combining
degenerate representations of su(1, 1).

• It is also helpful for 2-particle irreps of sp(2k,R).
• Some extra care required for n ⩾ 3 particles
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