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Introduction

Introduction

Recall that the problem of classical Brownian motion deals with the
motion of a suspended particle in a fluid – A prototypical example of
a microscopic system + bath scenario.

Quantum Brownian motion refers to the dissipative dynamics of a
(quantum) particle that is coupled with a (quantum) heat bath
[Weiss, Quantum Dissipative Systems, 2nd ed., World Scientific
(1999)].

Full Hamiltonian:
H = HS + HB + HSB. (1)

Two ways to approach the problem:
1 Heisenberg-picture formalism, i.e., based on (reduced) Heisenberg

equations for the system observables.
2 Schrödinger-picture formalism, i.e., based on a master equation

describing the dynamics of the (reduced) density operator.

Here we focus on the Heisenberg-picture formalism.
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Model

Independent-Oscillator Model

One can model the heat bath as being composed of an infinite
number of independent quantum oscillators; taking a bilinear
system-bath coupling, the full Hamiltonian reads as [Feynman-Vernon
(1963), Ford-Kac-Mazur (1965), Caldeira-Leggett (1981)]

H =
p2

2m
+

mω2
0x

2

2
+

N∑
j=1

[
p2j

2mj
+

mjω
2
j

2

(
qj −

cj
mjω

2
j

x

)2
]
, (2)

where m,mj , ω0, ωj , cj > 0, [x , p] = i~, and [qj , pk ] = i~δj ,k .

Quantum Langevin equation [Ford et al., PRA 37, 4419 (1988)]:

mẍ(t) +

∫ t

0
µ(t − t ′)ẋ(t ′)dt ′ + mω2

0x(t) = f (t), (3)

where

µ(τ) =
N∑
j=1

c2j
mjω

2
j

cos(ωjτ)Θ(τ). (4)
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Model

Bath-Induced Noise

In the quantum Langevin equation, f (t) is an operator-valued noise:

f (t) =
N∑
j=1

cj

[
qj(0) cos(ωj t) +

pj(0)

mjωj
sin(ωj t)

]
− µ(t)x(0). (5)

Initial distribution:

ρB+SB(0) =
1

Λ
exp

[
− β

N∑
j=1

{p2j (0)

2mj
+

1

2
mjω

2
j

(
qj(0)−

cjx(0)

mjω
2
j

)2}]
.

(6)
Statistical properties of the noise:

〈{f (t), f (t ′)}〉 =
2

π

∫ ∞
0

dω~ωRe[µ̃(ω)] coth
( ~ω

2kBT

)
cos[ω(t − t ′)],

(7)

〈[f (t), f (t ′)]〉 =
2

iπ

∫ ∞
0

dω~ωRe[µ̃(ω)] sin[ω(t − t ′)]. (8)
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Thermally-Averaged Energy

Mean Energies

The mean kinetic and potential energies are obtained by equal-time
velocity and position correlation functions. In the steady state, we get
the mean kinetic and potential energies as

Ek = lim
t→∞

m

2
〈ẋ(t)ẋ(t)〉, Ep = lim

t→∞

mω2
0

2
〈x(t)x(t)〉. (9)

Solving the quantum Langevin equation, we find

Ek(T ) =
2m

π

∫ ∞
0

Im[α(ω)]ωεk(ω,T )dω, (10)

Ep(T ) =
2mω2

0

π

∫ ∞
0

Im[α(ω)]

ω
εp(ω,T )dω, (11)

εk,p(ω,T ) =
~ω
4

coth

(
~ω

2kBT

)
, (12)

α(ω) = [m(ω2
0 − ω2)− iωµ̃(ω)]−1. (13)
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Thermally-Averaged Energy

Quantum Energy Partition

We define the (probability distributions)

Pk(ω) =
2m

π
Im[α(ω)]ω, Pp(ω) =

2mω2
0

π

Im[α(ω)]

ω
, (14)

which satisfy Pk,p(ω) ≥ 0, ∀ω ∈ [0,∞) and
∫∞
0 Pk,p(ω)dω = 1.

This allows us to write

Ek,p(T ) =

∫ ∞
0

εk,p(ω,T )Pk,p(ω)dω, (15)

The thermally-averaged energies arise as a sum of contributions from
bath oscillators with different frequencies with εk,p(ω,T )Pk,p(ω)dω
being the contribution from bath oscillators in the frequency range
from ω to ω + dω.

In the classical limit, we have ε→ kBT/2, which gives

Ek,p(T ) =
kBT

2

∫ ∞
0

Pk,p(ω)dω =
kBT

2
. (16)
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Thermally-Averaged Energy

Illustrative Example: Ohmic Dissipation

Let us adopt the Ohmic model of dissipation in which we have
µ(t) = 2mγδ(t) or equivalently, µ̃(ω) = mγ.

This gives

Pk(ω) =
2ω2

π

γ

(ω2
0 − ω2)2 + (γω)2

, (17)

and

Pp(ω) =
2ω2

0

π

γ

(ω2
0 − ω2)2 + (γω)2

, (18)

which can be observed to be positive definite and may be verified by
explicit integration to be normalized.

Note, however, that for the Ohmic dissipation model, the mean
kinetic energy diverges; this is regularized by imposing a finite
memory timescale in the dissipation kernel. One choice is
µ(t) ∼ e−ωcutt , which is called the Drude model.
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Thermally-Averaged Energy
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Figure: ω0Pk(ω/ω0) for γ = 0.3ω0 (red), γ = 0.5ω0 (blue) and γ = 0.7ω0 (green).
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Figure: ω0Pp(ω/ω0) for γ = 0.3ω0 (red), γ = 0.5ω0 (blue) and γ = 0.7ω0 (green).
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Thermally-Averaged Energy

Two Notions of Energy

The mean energy can be defined as E (T ) = Ek(T ) + Ep(T ), which
coincides with 〈HS〉 averaged over the ensemble of bath-induced noise.

Alternatively, one can define an ‘internal energy’ as

U(T ) = 〈H〉ρH − 〈HB〉ρHB
,

=
Tr(e−H/kBTH)

Z
− Tr(e−HB/kBTHB)

ZB
. (19)

Explicitly, we have Ũ(T ) = 〈H〉ρH and UB(T ) = 〈HB〉ρHB
, where

UB(T ) =
N∑
j=1

~ωj

2
coth

(
~ωj

2kBT

)
, Ũ(T ) =

N∑
k=0

~Ωk

2
coth

(
~Ωk

2kBT

)
,

(20)
where {ωj} are the heat-bath frequencies and {Ωk} are the
normal-mode frequencies of the coupled system+bath.
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Thermally-Averaged Energy

Partition of Internal Energy

It follows that the internal energy may be expressed as

U(T ) =
1

π

∫ ∞
0

ε(ω,T )Im

[
d

dω
ln[α(ω)]

]
dω, (21)

where ε(ω,T ) = εk(ω,T ) + εp(ω,T ) = ~ω
2 coth

( ~ω
2kBT

)
.

Some straightforward manipulations reveal that

1

π
Im

[
d

dω
lnα(ω)

]
(22)

=
N∑

k=0

[
δ(ω − Ωk) + δ(ω + Ωk)

]
−

N∑
j=1

[
δ(ω − ωj) + δ(ω + ωj)

]
,

which is positive definite and normalized [J. K., Ghosh, and
Bandyopadhyay, Physica A 599, 127466 (2022)].
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Thermally-Averaged Energy

Energy Functions Vs γ
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Figure: Dimensionless energy functions βU (black-dashed), βE (yellow-solid), and
βE (violet-solid) for the dissipative quantum oscillator as a function γ/ω0, for
α = β~ω0 = 0.5 and ωcut = 10ω0; here µ(t) ∼ e−ωcutt and E is the energy
function found from the partition function obtained via Euclidean path integrals.
We have taken ω0 = 1.
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Thermally-Averaged Energy

Energy Functions Vs ~ω0/kBT
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Figure: Dimensionless energy functions βU (black-dashed), βE (yellow-solid), and
βE (violet-solid) for the dissipative quantum oscillator, as a function α = β~ω0,
for γ = ω0 and ωcut = 10ω0; here µ(t) ∼ e−ωcutt and E is the energy function
found from the partition function obtained via Euclidean path integrals. We have
taken ω0 = 1.
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Weak-Coupling Limit

Weak-Coupling Limit

At weak system-bath coupling, the initial density matrix is
factorizable as ρ(0) = ρS(0)⊗ ρB(0), as in the Born approximation.

The weak-coupling limit corresponds to1 γ → 0+, in which one finds
[Ghosh and Dattagupta, Physica A 129926 (2024)]

Ek = Ep =

∫ ∞
0

δ(ω−ω0)
~ω
4

coth

(
~ω

2kBT

)
dω =

~ω0

4
coth

(
~ω0

2kBT

)
.

(23)

Markovian-noise approximation (for µ̃(ω) = mγ):

〈{f (t), f (t ′)}〉 = 2mγ~ω0 coth

(
~ω0

2kBT

)
δ(t − t ′). (24)

Eq. (24) matches exactly with that presented in [Agarwal, Phys. Rev.
A 4, 739 (1971)] obtained from a Born-Markov master equation.

1Physically this means γ << ω0.
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Generalization to Three Dimensions with Magnetic Field

Dissipative Diamagnetism: Model

Relevant Hamiltonian (in 3D) [Dattagupta and Singh, Phys. Rev.
Lett. 79, 961 (1997)]:

H =
(p− e

cA)2

2m
+

mω2
0r

2

2
+
∑
j

[
p2j

2mj
+

1

2
mjω

2
j

(
qj −

cj
mjω

2
j

r

)2]
.(25)

Here p = (px , py , pz) and r = (x , y , z) are the three-dimensional
momentum and position operators, pj and qj are the corresponding
variables for the jth bath oscillator and A is the vector potential.

Corresponding quantum Langevin equation:

mr̈(t) +

∫ t

0
µ(t − t ′)ṙ(t ′)dt ′ − e

c
(ṙ(t)× B) + mω2

0r = f(t), (26)

where B = ∇× A and µ(t) is defined in the same way as before.

f(t) is now a three-component operator-valued quantum noise.
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Generalization to Three Dimensions with Magnetic Field

Energy in Dissipative Diamagnetism

Performing analogous calculations, we can show that for B = (0, 0,B)
[J.K., Ghosh, and Bandyopadhyay, Phys. Rev. E 104, 064112 (2021);
Physica A 625, 128993 (2023)]

〈K.E.〉 =
〈(p− eA/c)2〉

2m
=

∫ ∞
0

εk(ω,T )Pk(ω)dω, (27)

〈P.E.〉 =
〈mω2r2〉

2
=

∫ ∞
0

εp(ω,T )Pp(ω)dω. (28)

Here εk(ω,T ) = εp(ω,T ) = 3~ω
4 coth

( ~ω
2kBT

)
are the

thermally-averaged kinetic and potential energies of each
three-dimensional bath oscillator.

Pk(ω) and Pp(ω) are probability distributions (too complicated to
explicitly write here).

Thus, we have the quantum counterpart of energy equipartition
theorem in three dimensions, in the presence of a magnetic field.
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Generalization to Three Dimensions with Magnetic Field

Probability Distributions for Drude Dissipation:
Dependence on Magnetic Field
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Figure: Variation of (a) P̃k(w) = ωcutPk(ω/ωcut) and (b)
P̃p(w) = ωcutPp(ω/ωcut) as a function of re-scaled thermostat oscillator
frequencies w = ω/ωcut for Drude dissipation with selected values of
ω̃c = ωc/ωcut while keeping ω0/ωcut = 0.5 and γ/ωcut = 0.2.
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Generalization to Three Dimensions with Magnetic Field

Probability Distributions for Drude Dissipation:
Dependence on Damping Strength
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Figure: Variation of (a) P̃k(w) = ωcutPk(ω/ωcut) and (b)
P̃p(w) = ωcutPp(ω/ωcut) as a function of re-scaled thermostat oscillator
frequencies w = ω/ωcut for Drude dissipation with selected values of a = γ/ωcut

while keeping ω0/ωcut = 0.5 and ωc/ωcut = 0.5.
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Generalization to Three Dimensions with Magnetic Field

Variation of Mean Kinetic Energy

0 1 2 3 4 5
ω
˜
c1.5

2.0

2.5

3.0

3.5
E
˜
k

(a)

a = 1

a = 3

a = 5

a = 7

0 1 2 3 4 5
ω
˜
c1.5

2.0

2.5

3.0

3.5

4.0
E
˜
k

(b)

ω
˜
o = 1

ω
˜
o = 2

ω
˜
o = 3

ω
˜
o = 4

Figure: Variation of Ẽk = βEk as a function of the re-scaled magnetic field
ω̃c = ωc/ωcut with (a) ω0/ωcut = 1, β~ωcut = 1 for different values of
a = γ0/ωcut and (b) γ0/ωcut = 1, β~ωcut = 1 for different values of
ω̃0 = ω0/ωcut.

Ek =
3

2β
+

2

β

∞∑
n=1

An × Bn + (ωcνn)2

A2
n + (ωcνn)2

+
1

β

∞∑
n=1

Bn

An
(29)

where An = ν2n + ω2
0 + νnγ0ωcut

νn+ωcut
and Bn = ω2

0 + νnγ0ωcut

νn+ωcut
.
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Generalization to Three Dimensions with Magnetic Field

Variation of Mean Potential Energy
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Figure: Variation of Ẽp = βEp as a function of the re-scaled magnetic field
ω̃c = ωc/ωcut with (a) ω0/ωcut = 1, β~ωcut = 1 for different values of
a = γ0/ωcut and (b) γ0/ωcut = 1, β~ωcut = 1 for different values of
ω̃0 = ω0/ωcut.

Ep =
3

2β
+

2ω2
0

β

∞∑
n=1

An

A2
n + (ωcνn)2

+
ω2
0

β

∞∑
n=1

1

An
(30)
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Generalization to Three Dimensions with Magnetic Field

Energy Functions Vs γ
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Figure: Dimensionless energy functions βU (black-dashed), βE (yellow-solid), and
βE (violet-solid) for the dissipative magneto-oscillator, as a function γ/ω0, for
α = β~ω0 = 0.5, ωc = 2.5ω0, and ωcut = 10ω0. We have taken ω0 = 1.
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Generalization to Three Dimensions with Magnetic Field

Energy Functions Vs ~ω0/kBT
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Figure: Dimensionless energy functions βU (black-dashed), βE (yellow-solid), and
βE (violet-solid) for the dissipative magneto-oscillator, as a function α = β~ω0,
for γ = ω0, ωc = 2.5ω0, and ωcut = 10ω0. We have taken ω0 = 1.
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Ongoing Work

Ongoing Work: Ericsson Cycle for Magnetic Work

One can utilize the case of dissipative cyclotron motion as a heat
engine (Collaboration with A. Ghosh, S. Dattagupta, S.
Chaturvedi, and M. Bandyopadhyay).

In an ongoing project, we are investigating the effect of different
system and environmental parameters on the behavior of the
efficiency of an Ericsson Cycle:
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Ongoing Work

Preliminary Results 1
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Figure: Plot of efficiency η as a function of γ/ω0 for Tc/ω0 = 0.002 (purple) and
0.003 (green). We have used ωc,1/ω0 = 0.1, and for computing the energy
differences, we have used ωcut/ω0 = 1000.
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Ongoing Work

Preliminary Results 2
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Figure: Plot of rescaled work done W /ω0 as a function of the rescaled heat input
Q/ω0 for Tc/ω0 = 0.002 (purple) and 0.003 (green). We have used
ωc,1/ω0 = 0.1, and for computing the energy differences, we have used
ωcut/ω0 = 1000.
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Ongoing Work

Thank You!
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