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The present talk deals with the operator Ht (q), for t = 0, 1, generated in
L2[0,π] by the di¤erential expression

�y 00(x) + q(x)y(x) (1)

and the boundary conditions

y(π) = e iπty(0), y 0(π) = e iπty 0(0), (2)

where q is a real potential of the form

q(x) =

8<:a if x 2 [0, c ],

b if x 2 (c ,π],
(3)

q(x + π) = q(x), and c 2 (0,π). Without loss of generality, we assume
that a < b, and

q0 =
1
π

Z π

0
q(x)dx = 0.

Therefore, we have

ac + b(π � c) = 0, a < 0 < b, (4)

and (b� a)c = bπ.
(Yalova University) 29/08 1 / 1



The Kronig-Penney model is a simpli�ed model of the electron in a
one-dimensional periodic potential and has been studied in many works
(see, for example, [1, Kronig, R.D.L., Penney, W.G.: Quantum mechanics
in cristal lattices. Proc. R. Soc. 130, 499�513 (1931)], [2, Chap.3, Brown,
B.M., Eastham, M.S.P., Schmidt, K.M.: Periodic di¤erential operators,
Operator Theory: Advances and Applications. 230, Birkhuser/Springer:
Basel AG, Basel (2013)], [3, Chap.21, E. C. Titchmarsh, Eigenfunction
Expansion (Part II). Oxford University Press, London (1958)], [4, Veliev, O.
(2024), From One-Dimensional to Multidimensional. In: Multidimensional
Periodic Schrödinger Operator. Springer Tracts in Modern Physics, vol
291. Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4_2.], [5,
O. A. Veliev, On Exact Estimates of Instability Zones of the Hill�s
Equation with Locally Integrable Potential, arxiv.org/abs/2311.11568v2,
2023] and references therein).
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In the case of the Kronig-Penney model, the potential q(x) has the form

q(x) =

8<:a if x 2 [0, c ],

b if x 2 (c , d ],
(5)

and q(x + d) = q(x), where c 2 (0, d). In the present work, without loss
of generality, we assume that d = π. Veliev [4, 5, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrödinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4_2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill�s Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023]
studied the bands and gaps in the spectrum of the Schrödinger operator,
generated in L2[0, 1] by the di¤erential expression (1) with potential (5),
for d = 1, and obtained asymptotic formulas for the length of the gaps in
the spectrum.
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The eigenvalues of H0(q) and H1(q) are called the periodic and
antiperiodic eigenvalues of the Hill operator H(q), generated in L2[0,π] by
the di¤erential expression (1) with potential (3), and they are denoted by
λn,j and µn,j , respectively, for n 2 Z+, j = 1, 2, where Z+ is the set of
positive integers. The �rst periodic eigenvalue is denoted by λ0 and
without loss of generality, it is assumed that λn,1 � λn,2 and µn,1 � µn,2,
for n 2 Z+. It is known that (see [6, M. S. P. Eastham, The Spectral
Theory of Periodic Di¤erential Equations.Scottish Academic Press,
Edinburgh, UK (1973)]),
the spectrum of the Schrödinger operator H(q) consists of the real
intervals

Γ1 := [λ0, µ1,1], Γ2 := [µ1,2,λ1,1], Γ3 := [λ1,2, µ2,1], . . . .

The bands Γ1, Γ2, . . . of the spectrum σ(H(q)) of H(q) are separated by
the gaps

∆1 := (µ1,1, µ1,2), ∆2 := (λ1,1,λ1,2), ∆3 := (µ2,1, µ2,2), . . . .

(Yalova University) 29/08 1 / 1



For this reason, the investigation of the periodic and antiperiodic
eigenvalues is of great importance. In [4, 5, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrödinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4_2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill�s Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023],
Veliev investigated the asymptotic behavior of large periodic and
antiperiodic eigenvalues to obtain asymptotic formulas for the length of
the gaps in the spectrum.
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In this work, we provide estimates for small periodic and antiperiodic
eigenvalues of the Schrödinger operator H(q). We obtain some useful
equations for calculating the periodic and antiperiodic eigenvalues using
Rouche�s theorem. These equations are derived from some iterations
formulas by the methods used in [7, 8, N. Dernek, O. A. Veliev, On the
Riesz basisness of the root functions of the non-selfadjoint Sturm-Liouville
operator. Isr. J. Math. 145, 113�123 (2005); Shkalikov, A.A., Veliev,
A.A.: On the Riesz basis property of the eigen- and associated functions of
periodic and antiperiodic Sturm-Liouville Problems. Math. Notes 85(5),
647�660 (2009)].
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It is important to note that in [7, 8, N. Dernek, O. A. Veliev, On the Riesz
basisness of the root functions of the non-selfadjoint Sturm-Liouville
operator. Isr. J. Math. 145, 113�123 (2005); Shkalikov, A.A., Veliev,
A.A.: On the Riesz basis property of the eigen- and associated functions of
periodic and antiperiodic Sturm-Liouville Problems. Math. Notes 85(5),
647�660 (2009)],
the authors used asymptotic formulas for large eigenvalues, which cannot
be used for small eigenvalues. In our work, we consider small eigenvalues
by numerical methods. We also note that, it is not easy to �nd conditions
on the potential for which the small eigenvalues satisfy the equations
derived from the iterations formulas, the calculations are very long and
technical.

(Yalova University) 29/08 1 / 1



We shall focus on the periodic eigenvalues. The investigation of the
antiperiodic eigenvalues is similar. To give estimates for small periodic
eigenvalues, �rst, we prove (see Theorem 3) that the periodic eigenvalue
λn,j is either the root of the equation

λ = (2n)2 +
∞

∑
k=1

Ak ,n(λ) + e
i2nc

�
q2n +

∞

∑
k=1

Bk ,n(λ)
�
, (6)

or the root of the equation

λ = (2n)2 +
∞

∑
k=1

Ak ,n(λ)� e i2nc
�
q2n +

∞

∑
k=1

Bk ,n(λ)
�
, (7)

in the set Dn := [(2n)2 �Mn, (2n)2 +Mn ], if Mn �
4(2n� 1)

3
, for

n = 1, 2, . . ., where Mn = maxfjaj, bg,
qk = (q, e i2kx ) =

1
π

Z π

0
q(x)e�i2kxdx and the in�nite series Ak ,n and Bk ,n

are de�ned in (13).
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We also prove (see Theorem 4) that the �rst periodic eigenvalue λ0
satis�es the equation

λ =
∞

∑
k=1

Ak ,0(λ), (8)

if M0 = maxfjaj, bg � 4/3. Then, to use numerical methods we take
�nite sums instead of the in�nite series in the equations obtained. To
approximate the roots of the equations (6), (7), and (8), we use the �xed
point iteration. It can also be used the Newton-Raphson method but in
this case it is necessary to compute the derivatives of the functions
Kn,j (λ) and K0(λ) de�ned by (20) and (21). Then, using the Banach
�xed point theorem, we prove that each of these equations containing the
�nite sums has a unique solution in the appropriate set
Dn = [(2n)2 �Mn, (2n)2 +Mn ], (see Theorem 5 and Theorem 6).
Moreover, we give error analysis (see Theorem 7 and Theorem 8) and
present a numerical example.
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Now, we state some preliminary facts. It is well known that the spectra of
the operators H0(q) and H1(q) are discrete and for large enough n, there
are two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues
(counting multiplicities) in the neighborhood of n2. See the basic and
detailed classical results in [2, 9, 10, 11, Brown, B.M., Eastham, M.S.P.,
Schmidt, K.M.: Periodic di¤erential operators, Operator Theory:
Advances and Applications. 230, Birkhuser/Springer: Basel AG, Basel
(2013); Levy, M., Keller, B.: Instability intervals of Hill�s equation. Comm.
on Pure and Appl. Math. 16, 469-476 (1963); Magnus, W., Winkler, S.:
Hill�s Equation. Interscience Publishers, New York (1966); Marchenko, V.:
Sturm-Liouville Operators and Applications. Basel, Birkhauser Verlag
(1986)] and references therein.
The eigenvalues of the operators H0(0) and H1(0) are (2n)2 and
(2n+ 1)2, for n 2 Z, respectively and all the eigenvalues of H0(0) and
H1(0), except 0, are double.
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It is also known that [12, J. Pöschel and E. Trubowitz, Inverse Spectral
Theory (Academic Press: Boston,Mass, USA, 1987)]

jλn,j � (2n)2j � Mn,

for n � 1, where Mn = maxfjaj, bg. Therefore, we have

(2n)2 �Mn � λn,j � (2n)2 +Mn,

for n � 1. Here, we choose the number Mn depending on the index n.
Besides,

jλ0j � M0,

where M0 = maxfjaj, bg and we assume M0 � 4/3.
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If k 6= �n, then

jλn,j � (2k)2j � j(2n)2 � (2k)2j �Mn = 4jn� k jjn+ k j �Mn

� 4(2n� 1)�Mn, (9)

for n � 1 and under the assumption Mn �
4(2n� 1)

3
. If n = 1, we have

jλ1,j j � 4+M1 and

jλ1,j � (2k)2j � jjλ1,j j � (2k)2j � 16� jλ1,j j � 12�M1,

for jk j � 2. Besides, if n � 2, we have jλn,j j � jλ2,j j � 16�M2 and

jλn,j � (2k � 1)2j � jjλ2,j j � (2k)2j � jλ2,j j � 4 � 12�M2,

for k 6= �n.
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The analogous inequalities can be written for the antiperiodic eigenvalues,
from the inequalities

(2n� 1)2 �mn � µn,j � (2n� 1)2 +mn,

for n � 2. If k 6= �n, then

jµn,j � (2k � 1)2j � j(2n� 1)2 � (2k � 1)2j �mn
= 4jn� k jjn+ k � 1j �mn � 4(2n� 2)�mn, (10)

for n � 2, under the assumption mn �
8(n� 1)

3
. If n = 1, we have

jµ1,j j � 1+m1 and

jµ1,j � (2k � 1)2j � jjµ1,j j � (2k � 1)2j � 9� jµ1,j j � 8�m1,

for jk j � 2, and we assume m1 � 8/3.
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To obtain iteration formulas, we use the equations

(λN ,j � (2n)2)(ΨN ,j , e
i2nx ) = (qΨN ,j , e

i2nx ), (11)

(λN ,j � (2n)2)(ΨN ,j , e
�i2nx ) = (qΨN ,j , e

�i2nx ) (12)

which are obtained from

�Ψ00N ,j (x) + q(x)ΨN ,j (x) = λN ,jΨN ,j (x),

by multiplying both sides of the equality by e i2nx and e�i2nx , respectively,
where ΨN ,j (x) is an eigenfunction corresponding to the eigenvalue λN ,j .
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Iterating equation (11) m times for N = n, the way it was done in the
paper [7, N. Dernek, O. A. Veliev, On the Riesz basisness of the root
functions of the non-selfadjoint Sturm-Liouville operator. Isr. J. Math.
(2005)], we obtain�

λn,j � (2n)2 �
m

∑
k=1

Ak ,n(λn,j )
�
(Ψn,j , e i2nx )

�
�
q2n +

m

∑
k=1

Bk ,n(λn,j )
�
(Ψn,j , e�i2nx ) = Rm,n(λn,j ), (13)

where

Ak ,n(λ) = ∑
n1,n2,...,nk

qn1qn2 � � � qnkq�n1�n2�����nk
[λ� (2(n� n1))2] � � � [λ� (2(n� n1 � � � � � nk ))2]

,

Bk ,n(λ) = ∑
n1,n2,...,nk

qn1qn2 � � � qnkq2n�n1�n2�����nk
[λ� (2(n� n1))2] � � � [λ� (2(n� n1 � � � � � nk ))2]

,

Rm,n(λ) = ∑
n1,n2,...,nm+1

qn1qn2 � � � qnmqnm+1(qΨn,j , e i2(n�n1�����nm+1)x )
[λ� (2(n� n1))2] � � � [λ� (2(n� n1 � � � � � nm+1))2]

.
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Here, the sums are taken under the conditions ns = �1,
s
∑
j=1
nj 6= 0, 2n, for

s = 1, 2, ...,m+ 1.

(Yalova University) 29/08 1 / 1



Similarly, iterating equation (12) m times, we obtain�
λn,j � (2n)2 �

m

∑
k=1

A�k ,n(λn,j )
�
(Ψn,j , e�i2nx )

�
�
q�2n +

m

∑
k=1

B�k ,n(λn,j )
�
(Ψn,j , e i2nx ) = R�m,n(λn,j ), (14)

where

A�k ,n(λ) = ∑
n1,n2,...,nk

qn1qn2 � � � qnkq�n1�n2�����nk
[λ� (2(n+ n1))2] � � � [λ� (2(n+ n1 + � � �+ nk ))2]

,

B�k ,n(λ) = ∑
n1,n2,...,nk

qn1qn2 � � � qnkq�2n�n1�n2�����nk
[λ� (2(n+ n1))2] � � � [λ� (2(n+ n1 + � � �+ nk ))2]

,

R�m,n(λ) = ∑
n1,n2,...,nm+1

qn1qn2 � � � qnmqnm+1(qΨn,j , e�i2(n+n1+���+nm+1)x )
[λ� (2(n+ n1))2] � � � [λ� (2(n+ n1 + � � �+ nm+1))2]

.

Here, the sums are taken under the conditions ns = �1,
s
∑
j=1
nj 6= 0,�2n,

for s = 1, 2, ...,m+ 1.
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We note that, the iteration formulas (13) and (14) were used in [7, N.
Dernek, O. A. Veliev, On the Riesz basisness of the root functions of the
non-selfadjoint Sturm-Liouville operator. Isr. J. Math. 145, 113�123
(2005)]
for large eigenvalues to obtain asymptotic formulas. In this work, we �nd
conditions on potential (3) for which the iteration formulas (13) and (14)
are also valid for the small eigenvalues, as m tends to in�nity. We also
note that, it is not easy to give such conditions, there are many technical
calculations. Since the potential q is of the form (3), we have the
followings, after some calculations:

qk =
a� b
i2πk

(1� e�i2kc ), q�k = e
i2kcqk , jq�k j = jqk j,

A�k ,n(λ) = Ak ,n(λ), B�k ,n(λ) = e
i4ncBk ,n(λ),

for k = 1, 2, . . ..
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In order to give the main results, we state the following lemmas. Without
loss of generality, we assume that Ψn,j (x) is a normalized eigenfunction
corresponding to the eigenvalue λn,j . First, we consider the case n � 1.

Lemma

If Mn �
4(2n� 1)

3
, for n = 1, 2, . . ., where Mn = maxfjaj, bg, then the

statements
(a) limm!∞ Rm,n(λ) = 0, limm!∞ R�m,n(λ) = 0,
(b) jun,j j2 + jvn,j j2 > 0, where un,j = (Ψn,j , e i2nx ) and
vn,j = (Ψn,j , e�i2nx )
are valid.

Now, we consider the case n = 0.

Lemma
If M0 = maxfjaj, bg � 4/3, then the statements
(a) limm!∞ Rm,0(λ) = 0, (b) j(Ψ0, 1)j > 0
are valid.
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Before stating the main results, we introduce the following notations and
relations which were used in the works [4, 5, 8, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrödinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4_2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill�s Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023; Shkalikov,
A.A., Veliev, A.A.: On the Riesz basis property of the eigen- and
associated functions of periodic and antiperiodic Sturm-Liouville Problems.
Math. Notes 85(5), 647�660 (2009)]
to obtain subtle asymptotic formulas for large eigenvalues and the length
of the gaps in the spectrum:

Q(x) =
Z x

0
q(t)dt, S(x) = Q2(x).

Obviously,
Q 0(x) = q(x), S 0(x) = 2Q(x)q(x),

and
Q(0) = Q(π) = 0, S(0) = S(π) = 0.
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By (3), we have

Q(x) =

8<:ax if x 2 [0, c ],

bx � bπ if x 2 (c ,π]

and

S(x) =

8<:a
2x2 if x 2 [0, c ],

(bx � bπ)2 if x 2 (c ,π].
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The Fourier coe¢ cients of Q(x) and S(x) are

Qk = (Q, e
i2kx ) =

1
π

Z π

0
Q(x)e�i2kxdx =

qk
i2k

=
b� a
4πk2

(1� e�i2kc )

and

Sk = (S , e
i2kx ) =

1
π

Z π

0
S(x)e�i2kxdx

=
1
π

Z c

0
a2x2e�i2kxdx +

1
π

Z π

c
(bx � bπ)2e�i2kxdx

=
(a2 � b2)(e�i2kc � 1)

i4πk3
+
(a2 � b2)ce�i2kc

2πk2
+
b2e�i2kc

2k2
.
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In particular,

Q0 =
1
π

Z π

0
Q(x)dx =

b
2
(c � π) =

ac
2
, Q2n =

(b� a)(1� e�i4nc )
16πn2

and

S2n =
(a2 � b2)(e�i4nc � 1)

i32πn3
+
(a2 � b2)ce�i4nc

8πn2
+
b2e�i4nc

8n2
.
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Using the Fourier decomposition Q(x) = ∑∞
k=�∞ Qke

i2kx of Q(x) and the
integration by parts, we obtain

B1,n((2n)2) =
∞

∑
k=�∞
k 6=0,2n

qkq2n�k
(2n)2 � (2(n� k))2 =

1
4

∞

∑
k=�∞
k 6=0,2n

qkq2n�k
k(2n� k)

= �
∞

∑
k=�∞
k 6=0,2n

QkQ2n�k = 2Q0Q2n �
1
π

Z π

0

� ∞

∑
k=�∞

Qke
i2kx

�2
e�i4nxdx

= 2Q0Q2n �
1
π

Z π

0
Q2(x)e�i4nxdx = 2Q0Q2n � S2n.
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Now we introduce the integral (see [4, 5, 8, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrödinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4_2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill�s Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023; Shkalikov,
A.A., Veliev, A.A.: On the Riesz basis property of the eigen- and
associated functions of periodic and antiperiodic Sturm-Liouville Problems.
Math. Notes 85(5), 647�660 (2009)])

I =
Z π

0
(P(x , n)� P0(n))2e�i8nxdx ,

where
P(x , n) =

Z x

0
q(t)e i4ntdt � q�2nx .
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It is obvious that

P(0, n) = P(π, n) = 0, P 0(x , n) = q(x)e i4nx � q�2n,

and

P(x , n) =

8><>:
a
i4n
(e i4nx � 1)� q�2nx if x 2 [0, c ],

b
i4n
(e i4nx � 1)� q�2nx � q�2nπ if x 2 (c ,π].
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The Fourier coe¢ cients of P(x , n) are

Pk (n) =
1
π

Z π

0
P(x , n)e�i2kxdx , P0(n) =

1
π

Z π

0
P(x , n)dx .

The integration by parts gives

P2n+k (n) = (P(x , n), e
i2(2n+k )x ) =

qk
i2(2n+ k)

for the Fourier coe¢ cients P2n+k (n) of P(x , n), for 2n+ k 6= 0. Using the
Fourier decomposition

P(x , n)� P0(n) =
∞

∑
k=�∞
k 6=0,�2n

qke i2(2n+k )x

i2(2n+ k)

of P(x , n)� P0(n) in the integral I ,
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we obtain

A1,n((2n)2) =
∞

∑
k=�∞
k 6=0,2n

jqk j2
(2n)2 � (2(n� k))2

=
∞

∑
k=1
k 6=2n

� jqk j2
(2n)2 � (2(n� k))2 +

jq�k j2
(2n)2 � (2(n+ k))2

�

=
1
2

∞

∑
k=1
k 6=2n

jqk j2
(2n� k)(2n+ k) = �

1
π
I .

P0(n) can be calculated as

P0(n) =
1
π

Z π

0
P(x , n)dx =

(b� a)(e i4nc � 1)
16πn2

+ q�2n(
π

2
� c)

=
(b� a)(e i4nc � 1)

16πn2
+
a(e i4nc � 1)

i4n
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Now, the integration by parts in the integral I , gives

I =
1
i4n

Z π

0
(P(x , n)� P0(n))(q(x)e i4nx � q�2n)e�i8nxdx

=
1
i4n
I1 �

q�2n
i4n

I2 �
πq2nP0(n)

i4n
,

where

I1 =
Z π

0
P(x , n)q(x)e�i4nxdx , I2 =

Z π

0
P(x , n)e�i8nxdx .
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By direct calculations, we obtain

I1 =
Z π

0
P(x , n)q(x)e�i4nxdx =

(b� a)(a+ b+ q�2n)(e�i4nc � 1)
16n2

� abπ

i4n
,

I2 =
Z π

0
P(x , n)e�i8nxdx =

(b� a)(1� e�i4nc )
32n2

,

and

I =
abπ

16n2
+
(a2 � b2) sin(4nc)

64n3
+
(b� a)2(1� cos(4nc))

64n4

+
(b� a)2(1� cos(4nc))

28πn4
.
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Therefore, we have

� A1,n((2n)2) =
1
π
I =

ab
16n2

+
(a2 � b2) sin(4nc)

64πn3

+
(b� a)2(1� cos(4nc))

64πn4
+
(b� a)2(1� cos(4nc))

28π2n4
, (15)

and

e i2nc
�
q2n + B1,n((2n)2)

�
= e i2nc

�
q2n + 2Q0Q2n � S2n

�
=
(a� b) sin(2nc)

2πn
+
ab cos(2nc)

8n2
+
(a2 � b2) sin(2nc)

16πn3
. (16)
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Letting m tend to in�nity in the equations (13) and (14), we obtain the
following main results. First, we consider the case n � 1:

Theorem

(a) If Mn �
4(2n� 1)

3
, for n = 1, 2, . . ., where Mn = maxfjaj, bg, then

λn,j is an eigenvalue of H0(q) if and only if it is either the root of the
equation

λ� (2n)2 �
∞

∑
k=1

Ak ,n(λ)� e i2nc
�
q2n +

∞

∑
k=1

Bk ,n(λ)
�
= 0 (17)

or the root of

λ� (2n)2 �
∞

∑
k=1

Ak ,n(λ) + e
i2nc

�
q2n +

∞

∑
k=1

Bk ,n(λ)
�
= 0 (18)

in the set Dn := [(2n)2 �Mn, (2n)2 +Mn ]. Moreover, the roots of (17)
and (18) in Dn, coincide with the (2n)th and (2n+ 1)st periodic
eigenvalues λn,1 and λn,2 of H0.
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Now, we consider the case n = 0:

Theorem
If M0 = maxfjaj, bg � 4/3, then the �rst periodic eigenvalue λ0 is the
root of the equation

λ�
∞

∑
k=1

Ak ,0(λ) = 0, (19)

in the set D0 = [�M0,M0]. Moreover, (19) has exactly one root (counting
multiplicity) in the set D0 and this root coincides with the �rst eigenvalue
λ0 of H0.
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We can use numerical methods by taking �nite sums instead of the in�nite
series in (17), (18) and (19), and obtain

λ� (2n)2 �
r

∑
k=1

As ,k ,n(λ) + (�1)je i2nc
�
q2n +

r

∑
k=1

Bs ,k ,n(λ)
�
= 0,

for j = 1 and j = 2, and

λ�
r

∑
k=1

As ,k ,0(λ) = 0,

respectively, where

As ,k ,n(λ) =
s

∑
n1,n2,...,nk=�s

qn1qn2 � � � qnkq�n1�n2�����nk
[λ� (2(n� n1))2] � � � [λ� (2(n� n1 � � � � � nk ))2]

,

Bs ,k ,n(λ) =
s

∑
n1,n2,...,nk=�s

qn1qn2 � � � qnkq2n�n1�n2�����nk
[λ� (2(n� n1))2] � � � [λ� (2(n� n1 � � � � � nk ))2]

.
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De�ne the functions

Kn,j (λ) := λ� (2n)2 � gn,j (λ) (20)

and
K0(λ) := λ� g0(λ), (21)

where

gn,j (λ) =
r

∑
k=1

As ,k ,n(λ)� (�1)je i2nc
�
q2n +

r

∑
k=1

Bs ,k ,n(λ)
�

(22)

and

g0(λ) =
r

∑
k=1

As ,k ,0(λ). (23)

Then,
λ = (2n)2 + gn,j (λ), (24)

for j = 1 and j = 2, and n � 1.
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Now we state another main result.
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Theorem

Suppose that Mn �
4(2n� 1)

3
, for n = 1, 2, . . ., where Mn = maxfjaj, bg.

Then for all x and y from the interval Dn = [(2n)2 �Mn, (2n)2 +Mn ],
the relations

jgn,j (x)� gn,j (y)j � Cn jx � y j, (25)

Cn =
4(b� a)2

π(4(2n� 1)�Mn)[π(4(2n� 1)�Mn)� (b� a)]
� 4

π(π � 1) < 1,

hold for j = 1, 2, and equation (24) has a unique solution ρn,j in Dn, for
each j. Moreover

jλn,j � ρn,j j <
6(b� a)2

π2(s + 1)2[4(s + 1)js + 1� 2nj �Mn ](1� Cn)

+
3(b� a)r+2

2πr+1(4(2n� 1)�Mn)r [π(4(2n� 1)�Mn)� (b� a)](1� Cn)
,

(26)
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We give an analogous theorem to Theorem 5 for the case n = 0.
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Theorem
Suppose that M0 � 4/3, where M0 = maxfjaj, bg. Then for all x and y
from the interval D0 = [�M0,M0] the relations

jg0(x)� g0(y)j � C0jx � y j,

C0 =
3(b� a)2

4π(2�M0)[π(4�M0)� (b� a)]
� 3

π(π � 1) < 1,

hold and the equation
λ = g0(λ)

has a unique solution ρ0 in D0, for each j, where g0(λ) =
r
∑
k=1

As ,k ,0(λ).

Moreover

jλ0 � ρ0j <
3(b� a)2

π2(s + 1)2[4(s + 1)2 �M0](1� C0)

+
9(b� a)r+2

16πr+1(4�M0)r�1(2�M0)[π(4�M0)� (b� a)](1� C0)
.

(27)
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Let us approximate ρn,j by the �xed point iterations:

xn,i+1 = (2n)2 + gn,1(xn,i ), (28)

and
yn,i+1 = (2n)2 + gn,2(yn,i ), (29)

where

gn,j (λ) =
r

∑
k=1

As ,k ,n(λ)� (�1)je i2nc
�
q2n +

r

∑
k=1

Bs ,k ,n(λ)
�

for j = 1, 2.
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Now we state the following result.
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Theorem

If Mn �
4(2n� 1)

3
, for n = 1, 2, . . ., where Mn = maxfjaj, bg, then the

following estimations hold for the sequences fxn,ig and fyn,ig de�ned
by (28) and (29):

jxn,i � ρn,1j < (Cn)i
�

(b� a)
2πn(1� Cn)

+
3(b� a)2

2π[4π(2n� 1)� (b� a)](1� Cn)

�
,

(30)

jyn,i � ρn,2j < (Cn)i
�

(b� a)
2πn(1� Cn)

+
3(b� a)2

2π[4π(2n� 1)� (b� a)](1� Cn)

�
,

(31)

for i = 1, 2, 3, . . ., where

Cn =
4(b� a)2

π(4(2n� 1)�Mn)[π(4(2n� 1)�Mn)� (b� a)]
� 4

π(π � 1) < 1.
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An analogous theorem to Theorem 7 can be stated for the case n = 0.

Theorem
If M0 � 4/3, where M0 = maxfjaj, bg, then the following estimation
holds for the sequence fx0,ig de�ned by x0,i = g0(x0,i ), where
g0(λ) =

r
∑
k=1

As ,k ,0(λ):

jx0,i � ρ0j � (C0)i
b� a

2π[2π � (b� a)](1� C0)
, (32)

where

C0 =
3(b� a)2

4π(2�M0)[π(4�M0)� (b� a)]
� 3

π(π � 1) < 1

is de�ned in Theorem 6.
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Thus by (26), (27), (30)-(32), we have the approximations x0,i , xn,i , and
yn,i for λ0, λn,1, and λn,2, respectively, with the errors

jλ0 � x0,i j <
3(b� a)2

π2(s + 1)2[4(s + 1)2 �M0](1� C0)

+
9(b� a)r+2

16πr+1(4�M0)r�1(2�M0)[π(4�M0)� (b� a)](1� C0)

+ (C0)i
b� a

2π[2π � (b� a)](1� C0)
,

jλn,1 � xn,i j <
6(b� a)2

π2(s + 1)2[4(s + 1)js + 1� 2nj �Mn ](1� Cn)

+
3(b� a)r+2

2πr+1(4(2n� 1)�Mn)r [π(4(2n� 1)�Mn)� (b� a)](1� Cn)

+ (Cn)i
�

(b� a)
2πn(1� Cn)

+
3(b� a)2

2π[4π(2n� 1)� (b� a)](1� Cn)

�
,
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and

jλn,2 � yn,i j <
6(b� a)2

π2(s + 1)2[4(s + 1)js + 1� 2nj �Mn ](1� Cn)

+
3(b� a)r+2

2πr+1(4(2n� 1)�Mn)r [π(4(2n� 1)�Mn)� (b� a)](1� Cn)

+ (Cn)i
�

(b� a)
2πn(1� Cn)

+
3(b� a)2

2π[4π(2n� 1)� (b� a)](1� Cn)

�
,

By these error formulas it is clear that the error gets smaller as r and s
grow.
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Now, we present a numerical example. From the numerical results, we
conclude that, we can impose the conditions M0 < 2 and Mn < 2(2n� 1),
for n = 1, 2, . . ., where Mn = maxfjaj, bg, for the periodic eigenvalues,
instead of the conditions M0 �

4
3
and Mn �

4(2n� 1)
3

, for n = 1, 2, . . .,

for some speci�c values of c 2 (0,π). Similarly, we can impose the
conditions m1 < 4 and mn < 4(n� 1), for n = 2, 3, . . ., where
mn = maxfjaj, bg, for the antiperiodic eigenvalues, instead of the
conditions m1 �

8
3
and mn �

8(n� 1)
3

, for n = 2, 3, . . ., for some speci�c

values of c 2 (0,π).
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Example
For a = �1, b = 1, and c = π/2, we have the following approximations
for the �rst periodic eigenvalues λ0, λ1,1, λ1,2 and antiperiodic eigenvalues
µ1,1, µ1,2. In our calculations, we take r = s = 5.

λ0 = �0.100720167503
λ1,1 = 3.953707280198

λ1,2 = 3.976894161836

µ1,1 = 0.317539742073

µ1,2 = 1.578063115969.

Usually it takes 8� 10 iterations with the tolerance 1e � 18 by the �xed
point iteration method, even if we choose an initial value that is not too
close to the exact value, which means that convergence is quite fast.
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Thank you...
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