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Quantum graphs

A metric graph consists of a set of edges and vertices; each edge is assigned a

positive length ℓj and therefore identified with an interval [0, ℓj ].

We associate with the graph the Hilbert

space H =
⊕N

j=1 L
2([0, ℓj ]), the

elements of which are Ψ = {ψj}.
Source: the cited book

Quantum graph is a metric graph equipped with a differential operator
(acting on the graph edges) accompanied by appropriate vertex conditions.

In the presence of a magnetic field, the Hamiltonian acts as the
magnetic Laplacian, (−i∇− A)2, assuming ℏ = 2m = 1.

To make such a Hamiltonian a self-adjoint operator, one has to match the

functions ψj properly at each graph vertex.

G. Berkolaiko, P. Kuchment:Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.
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Vertex coupling

At each vertex v connecting n edges of the graph, the self-adjointness is
ensured provided the functions at the vertex are matched through the
condition

(U − I )Ψv + i(U + I )(DΨ)v = 0 ,

where U is an n × n unitary matrix, D := d
dx − i Aj is the quasi-derivative

operator, Aj is the tangential component of the magnetic vector potential
on the jth edge, Ψv and (DΨ)v are the vectors of the boundary values of
functions and their (outward) quasi-derivatives.

The most commonly used coupling conditions:

δ-coupling, and in particular, Dirichlet and Kirchhoff conditions;
corresponding to the choice of U = 2

n+iαJ − I .

δ′-coupling, and in particular, Neumann and anti-Kirchhoff conditions;
corresponding to the choice of U = I − 2

n−iβJ .
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Vertex coupling of a preferred-orientation

introduced by Exner and Tater

P. Exner and M. Tater, Quantum graphs with vertices of a preferred orientation,

Phys. Lett. A 382 (2018).

motivated by the application to model the anomalous Hall effect

the coupling matrix

U = +R :=


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0



In the component form, the conditions (R coupling) are

(ψj+1 − ψj) + i (Dψj+1 +Dψj) = 0, j = 1, . . . , n ,

for a vertex of degree n where D := d
dx − i Aj .
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Asymptotics of the preferred-orientation coupling

The transport properties of the vertex at high energies depend on the
vertex parity; the vertex remains transparent if it is of an even parity, while
for the odd ones, we get an effective decoupling of the edges.

Denoting η := 1−k
1+k , a straightforward computation gives [1]

Sij(k) =
1− η2

1− ηN

{
− η

1− ηN−2

1− η2
δij + (1− δij) η

(j−i−1)(mod N)
}
,

in particular,for N = 3, 4, we get

S3(k) =
1 + η

1 + η + η2


−η
1+η

1 η

η −η
1+η

1

1 η −η
1+η

 , S4(k) =
1

1 + η2


−η 1 η η2

η2 −η 1 η
η η2 −η 1
1 η η2 −η



We see that limk→∞ S(k) = I if N is odd, while for N even the limit
is different from the unit matrix.

[1] P. Exner and M. Tater, Phys. Lett. A 382 (2018).
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Previous results on preferred-orientation coupling:
non-magnetic quantum graphs

Exner, P., and Tater, M., Phys. Lett. A 382 (2018) 283–287.

Exner, P., and Lipovský, J., J. Math. Phys. 60 (2019), 122101.

Exner, P., and Lipovský, J., Phys. Lett. A 384 (2020), 126390.

Baradaran, M, Exner, P, and Tater, M, Rev. Math. Phys. 33 (2021), 2060005.

Exner, P, Phys. Part. Nucl. 52 (2021), 330–336.

Exner, P., and Tater, M., Phys. Lett. A 416 (2021) 127669.

Baradaran, M, and Exner, P, J. Math. Phys. 63 (2022), 083502.

Baradaran, M., Exner, P., and Tater, M., Ann. Phys. 443 (2022), 168992.

Baradaran, M., and Exner, P., J. Phys. A: Math. Theor. 57 (2024), 265202.

spectral properties of different types of lattices and array of loops

asymptotic behavior of the spectral bands and transport properties in
the high-energy regime
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Magnetic generalizations of the previously studied
non-magnetic models

P. Baradaran, M., Exner, P., and Tater, M., Ann. Phys. 443 (2022), 168992.

loosely connected rings (dv = 3): the spectrum is dominated by gaps.

P. Exner and M. Tater, Phys. Lett. A 382 (2018).

Source: the cited paper

square lattice (dv = 4): the spectrum is dominated by bands.
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Magnetic ring chains

We consider an array of rings, coupled either tightly or loosely through connecting links,

in a homogeneous magnetic field B = (0, 0,B). The magnetic potential is supported on

the loops at which the Hamiltonian acts as ψj 7→ −D2ψj where D := d
dx

− i Aj .

●● ●● ●● ●●
0

ψ1φ1

ψ2φ2

ψ3φ3

ℓ1

ℓ2

ℓ3

A A A A

loosely connected rings, ℓi ̸= 0 (dv = 3)

two limiting cases, ℓ1 = 0 or ℓ2 = 0 (dv = 4)

according to Floquet-Bloch decomposition theorem, we consider an elementary cell

for positive energies E = k2 > 0, the Ansatz for the solution is(
a+j e ikx + a−j e−ikx

)
e i Aj x ; for negative energies, one replaces k by iκ with κ > 0

Baradaran, M., Exner, P. and Lipovsky, J., J. Phys. A: Math. Theor. 55 (2022) 375203.
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To find the spectral condition, the functions have to be matched through

the preferred-orientation coupling at each vertex

Floquet conditions at the free ends of the cell

Theorem (Baradaran, Exner, Lipovsky, 2022)

For A ∈ Z, the spectrum is the same as that for non-magnetic chain.

For A− 1
2 ∈ Z, depending on ℓi , i = 1, 3, flat bands occur at the

energies k2 = q2
(
n − 1

2

)2
with q, n ∈ N where q is odd.

Away from those flat bands, the spectrum is absolutely continuous

having a band-and-gap structure; it has infinitely many gaps in its

positive part.

The negative spectrum consists of a pair of bands which may merge

at particular values of the parameters.
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we have the following spectral patterns

the probability of belonging to the spectrum, proposed by Band and
Berkolaiko [1], for graphs with Kirchhoff vertices

Pσ(H) := lim
K→∞

1

K
|σ(H) ∩ [0,K ]|

[1] R. Band, G. Berkolaiko, Phys. Rev. Lett. 113 (2013).
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The magnetic field influences the probability of the limiting cases only:

loosely connected rings, ℓi ̸= 0 (dv = 3): Pσ(H) = 0.

tightly connected rings, ℓ1 = 0 (dv = 4):

Pσ(H) =

{
1
2
+ 2A− 4A2 (A mod 1

2
) . . . ℓ3 ̸= π , ℓ2

ℓ3
/∈ Q

1− 1
π

arccos (cos 2Aπ) . . . ℓ3 = π
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the limiting case when ℓ3 = 0 (dv = 4) and ℓ1 /∈ 2πQ: Pσ(H) = 1
2
.

The Band–Berkolaiko universality holds whenever the edges are incommensurate.

Baradaran, M., Exner, P. and Tater, M, Ann. Phys. 443 (2022) 168992.
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Square lattice in a magnetic field B = (0, 0,B)

the flux per plaquette Φ = p
q Φ0 with coprime q ≥ 2 and p = 1, 2, ..., q − 1;

the magnetic unit cell consists of q plaquettes

we use the Landau gauge A = B(0, x , 0) for the magnetic potential

on the horizontal edges,the operator acts as − d2

dx2 ; the solutions are

combinations of e±ikx

on the vertical edges, we have −D2
v := −

(
d
dy − ivB

)2
where v = 1, 2, ..., q is

the vertex index; the solutions are linear combinations of e ivBye±iky

Baradaran, M., Exner, P. and Lipovsky, J., Ann. Phys. 454 (2023) 169339.
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The spectral condition is determined by solving a system of 4q linear equations.

band spectrum for Φ = π (q = 2 and p = 1)

0 5 10 15 20

� pairs of wide bands determined by the condition −1 ≤ cos 2k ≤ 0

� pairs of narrow bands in the vicinity of the roots of sin2 k of the width
△En,b = 2(

√
2− 1) +O(n−2) and △En,g = 4 +O(n−2)

band spectrum for Φ = 2π p
3
( q = 3 and p = 1, 2).

0 5 10 15 20

1

2

� series of ‘three’ wide bands determined by the condition

−1 ≤ −3 cos
(
k + 2πp

3

)
− 3 cos

(
k − 2πp

3

)
− 9 cos k − 4 cos 3k ≤ 1

� series of ‘three’ narrow bands with asymptotically constant width
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band spectrum vs. the flux ratio Φ
Φ0

= p
q
with q ∈ {2, ..., 12} and p = 1, ..., q − 1

0 5 10 15

0

0.25

0.5

0.75

1

At low energies, the effect of the vertex condition is dominant.

in the high-energy regime, it is the magnetic field which dominates restoring

asymptotically the familiar Hofstadter’s butterfly pattern (or the solution of the

almost Mathieu equation)

there are series of narrow bands, appearing between each pair of butterflies, with

asymptotically constant width
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1

Figure: The asymptotic shape of the butterfly part of the spectrum. At the top

and bottom, the spectral bands of the non-magnetic case are shown.
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the probability of belonging to the spectrum, Pσ(H) := limK→∞
1
K
|σ(H) ∩ [0,K ]|
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Figure: The probability Pσ(H) versus the flux ratio Φ
Φ0

= p
q
with q ∈ {2, ..., 12}

and p = 1, ..., q − 1.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

with increasing q, the number of bands increases while the probability
quantity decreases: the spectrum could be fractal, in fact a Cantor
set, for irrational flux ratios

Marzieh Baradaran (UHK) AAMP XXI 16 / 20



we compare the obtained probabilities with the Thouless conjecture
for the almost Mathieu operator

lim
q→∞

q|σ
(
Φ = 2π p

q

)
| = 16CCat

π

where CCat =
∑

n∈N(−1)n(2n + 1)−2 ≈ 0.9159...

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

◆

●

Figure: Comparison of Pσ(H) to the Thouless conjecture values indicated

by the red diamonds.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Marzieh Baradaran (UHK) AAMP XXI 17 / 20



A recent modification of the model: Cairo lattice example

Baradaran, M., Exner, P.,

J. Phys. A: Math. Theor.

57 (2024) 265202.

we consider a Cairo lattice with the edges lengths a and b = (
√
3− 1)a

choosing U = ±R, the coupling conditions are

±(ψj+1 ∓ ψj) + iℓdv (±ψ
′
j+1 + ψ′

j ) = 0, dv = 3, 4

R coupling at all vertices results in Pσ(H
+R
ℓ3,ℓ4

) = 0 for any ℓ3, ℓ4 > 0

1 the limit ℓ3 → 0, changes the R coupling to the Kirchhoff one; Pσ(H
+R
0,ℓ4

) ≈ 0.82

2 imposing R at dv = 4 and −R at dv = 3, again, we get Pσ(H
±R
ℓ3,ℓ4

) ≈ 0.82
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1 the limit ℓ3 → 0, changes the R coupling to the Kirchhoff one; Pσ(H
+R
0,ℓ4

) ≈ 0.82

2 imposing R at dv = 4 and −R at dv = 3, again, we get Pσ(H
±R
ℓ3,ℓ4

) ≈ 0.82
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(a) the model with R coupling in
the limit ℓ3 → 0

(b) the model with (−1)dvR
coupling

Figure 1: The grey shaded area equals to 4π2 Pσ(H); the axes correspond to x :=
√
3 ka

and y := ka in the high-energy regime k → ∞.

This conclusion is not only numerical; we see that the asymptotic
conditions giving rise to these regions are obtained one from the other
through the transformations x ↔ x + π

2 and y ↔ y − π
2 .

Baradaran, M., Exner, P., J. Phys. A: Math. Theor. 57 (2024) 265202.
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Thank you for your attention!
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