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A polytropic process is a thermodynamic process that obeys the following relation:

𝑃 𝑉𝑛 = 𝐶

Constant

Some specific values correspond to particular cases:

n=0  Isobaric process
n=1  Isothermal process
n=𝛾   Isentropic process and 𝛾 is the ratio of heat capacity at constant pressure to heat 
capacity at constant volume. 𝛾=

𝐶𝑝

𝐶𝑉n=∞  Isochoric process

For negative n, such process is not allowed, because of the second low thermodynamics.

Volume

Pressure

Polytropic index
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✓ Lane-Emden equation is classical of mathematical physics.
✓ Lane –Emden equation was introduced in 1870 by Lane and was studied in 1907 by Emden[1]. 

[1] J.H. Lane, The American Journal of Science and Arts 50, 57 (1870) 

[2] R. Emden, Gaskugeln, Teubner, Berlin (1907)

✓ The Lane-Emden equation describes the density distribution inside a polytropic star in hydrostatic equilibrium.
For hydrostatic equilibrium consider a self-gravitating, spherical, metric fluid in hydrostatic equilibrium[2].

What is polytropic?

A spherical self-gravitating object in hydrostatic equilibrium that has polytropic equation of state 𝑃 = 𝐾𝜌𝛾

Is a polytropic.
𝛾 is adiabatic index and n =

1

𝛾−1
 is polytropic index.

𝑃 = 𝐾𝜌𝛾

𝑃𝑐 = 𝐾𝜌𝑐
𝛾

For the central point

𝑃 = 𝑃𝑐

𝜌

𝜌𝑐

1+
1
𝑛



And by differentiating again from above equation and considering 

for a polytropic hydrostatic equilibrium [3]:
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1

𝑟2

𝑑

𝑑𝑟
𝑟2𝐾𝜌𝑐

1
𝑛 (𝑛 + 1)

𝑑𝜃

𝑑𝑟
= −4𝜋𝐺𝜌𝑐𝜃𝑛

[3] Tooper, R. F. (1964). Astrophysical Journal, vol. 140, p. 434, 140, 434.
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𝑑𝑃 = −𝜌 𝑔 𝑑𝑟

𝑔 𝑟  =
𝐺 𝑚

𝑟2

𝑑𝑃 = −𝜌
𝐺 𝑚

𝑟2
 𝑑𝑟

𝜌 = 𝜌𝑐𝜃𝑛

𝑃 = 𝐾𝜌𝑐
1+

1

𝑛 𝜃𝑛+1

And by considering 𝜉 =
𝑟

𝛼
 where   𝛼 =

𝐾𝜌𝑐

10
𝑛 −1 (𝑛+1)

4𝜋𝐺
.
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We have the Lane-Emden equations:
1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) +𝜃𝑛= 0

In the following table we have reported three solutions of the Lane-Emden equation :

We see that the above equation is similar to Poisson equation:

∇2𝜙 =
1

𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝜙

𝑑𝜉
= 4𝜋𝐺𝜌

FunctionBoundary conditionsn

𝜃0 𝜉 = 1 −
1

6
𝜉2𝜃(0)=1,𝜃′(0)=0 0

𝜃1 𝜉 =
𝑆𝑖𝑛𝜉

𝜉

𝜃(0)=1,𝜃′(0)=0 1

𝜃5 𝜉 =
1

1 +
𝜉2

3

𝜃(0)=1,𝜃′(0)=0 5
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𝜽𝟎 𝝃 = 𝟏 −
𝟏

𝟔
𝝃𝟐

𝜽𝟏 𝝃 =
𝑺𝒊𝒏𝝃

𝝃

𝝆 = 𝝆𝐜 𝜽𝒏
𝒏 𝝃

The blue area is the acceptable region and the red area is the unacceptable region.
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In the Lane-Emden equation when n=5, by Chandrasekhar in 1932 are as follows [4]:
1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) +𝜃5= 0

The first of them:

𝜃5 𝜉 = ±
1

1 +
𝜉2

3

The second:

which is singular at ξ = 0.

𝜃5 𝜉 = ±
1

2𝜉

[4] S. Chandrasekhar, University of Chicago Press, Chicago Illinois (1939) 
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𝜃5 𝜉 = ±
𝑆𝑖𝑛(𝑙𝑛 𝜉)

√3ξ − 2𝜉 𝑆𝑖𝑛2(𝑙𝑛 𝜉)

𝜃 𝜉 = (
2(n − 3)

(n − 1)2𝜉2 )1/(𝑛−1)

For all Lane– Emden equations with n > 3, that is:

Then, in 1962 Srivastava found another solution that can be written in a compact form, namely[5]:
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A another solution given by Patryk Mach [6] for n=5, by substituting 𝛉 𝝃 =
𝐳

𝟐𝝃
 and 𝐭 = 𝒍𝒏𝝃, the Lane-

Emden equation becomes independent.
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and its standard integration yields:

where C denotes an integration constant. Further analysis depends on the factorisation of the polynomial
W 𝑧 = −𝑧6 + 3𝑧2 + 𝐶. In this equation  𝑧1, 𝑧2 and 𝑧3 are W 𝑧  real roots. 

 

Lane-Emden Solution for n=5

[6] Mach, P. (2012). Journal of mathematical physics, 53(6).
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Lane-Emden Solution for n=5

-2 < C < 0 

𝜃 𝜉 = ±
𝑧1𝑧2 𝑦2

2𝜉 (𝑧2𝑦2 − (𝑧2 − 𝑧1)) 𝑦 = 𝑑𝑐
1

2

𝑧1 + 𝑧3 𝑧2

3
𝐿𝑛 𝐵𝜉 ,

𝑧2 − 𝑧1 𝑧3

𝑧1 + 𝑧3 𝑧2

The Jacobi dc function is:
𝑑𝑐 𝑈, 𝑚 =

𝑑𝑛(𝑈, 𝑚)

𝑐𝑛(𝑈, 𝑚)

𝑑𝑛 𝑈, 𝑚 =
𝑑

𝑑𝑈
𝑎𝑚(𝑈, 𝑚) and 𝑎𝑚 𝑈, 𝑚 = 𝜑 and 𝑈 is incomplete elliptic integral of the first kind F:

𝑈 = 𝐹 𝜑, 𝑚 = න
0

𝜑 𝑑𝜃

1 − 𝑚 𝑠𝑖𝑛2𝜃

𝜑 = 𝑎𝑚 𝑈, 𝑚 : Jacobi amplitude and elliptic cosine 𝑈  is 𝑐𝑛

𝑐𝑛 𝑈, 𝑚 = cos( 𝑎𝑚(𝑈, 𝑚)) = cos(𝜑)
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Lane-Emden Solution for n=5

0 < C < 2 

𝜃 𝜉 = ±
𝑧1𝑧3 𝑦2

2𝜉 (𝑧1𝑦2 + (𝑧1 + 𝑧3)
𝑦 = 𝑠𝑐

1

2

𝑧1 + 𝑧3 𝑧2

3
𝐿𝑛 𝐵𝜉 ,

𝑧2 − 𝑧1 𝑧3

𝑧1 + 𝑧3 𝑧2

𝑠𝑐 𝑈, 𝑚 =
𝑠𝑛(𝑈, 𝑚)

𝑐𝑛(𝑈, 𝑚)

The elliptic sine is given by
𝑠𝑛 𝑈, 𝑚 = sin( 𝑎𝑚(𝑈, 𝑚)) = sin(𝜑)

and the delta amplitude 
𝑑𝑛 𝑈, 𝑚 =

𝑑

𝑑𝑈
𝑎𝑚(𝑈, 𝑚) 

and the Jacobi sc function is the ratio of the Jacobi elliptic sine function to the Jacobi elliptic function:
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Lane-Emden Solution for n=5

C > 0

𝜃 𝜉 = ±
𝐶

2𝜉 ℘
𝐿𝑛 𝐵𝜉

2 3
; 12,4(𝐶2 − 2) − 1

The Weierstrass elliptic function:

℘ z, 𝜔1, 𝜔2 = ℘ z =
1

𝑧2 + ෍

𝑚,𝑛 ≠{0,0}

1

𝑧 + 2 𝑚 𝜔1 + 2 𝑛 𝜔2
2 −

1

2 𝑚 𝜔1 + 2 𝑛 𝜔2
2

This function is doubly periodic with fundamental periods equal to 2𝜔1 and 2𝜔2 

℘ z + 2𝜔1 = ℘ z , ℘ z + 2𝜔2 = ℘ z



gravity with a deviation 
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In 1687, Newton hypothesized the inverse-square law (ISL) of universal gravitation, where the gravitational 
force F acting on a particle with mass m located at r, due to the presence of a mass m’ located at origin was 
given by

In 1894, Hall  applied Bertrand's formula a for the orbit of Mercury and proposed the gravitational force 
with deviation in the form [7]:

Hall determined the value of σ as σ = 0:00000016 to explain the discrepancy of 43 seconds of arc per century 
[8].

[7]A.Hall, the astronomical journal 319, 49 ( 1894).
[8]S. Plimpton, W. Lawton. Phys. Rev .(1936)
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We assume that the gravitational field at r due to a point mass m located at the origin is given by:

[9]J. Lane, American Journal of Science. 2, 57 (1870).
[10]G. Panotopoulos and I. Lopes,  International Journal of Modern Physics D, 29, 08 (2020).

The gravitational potential is defined by

The Lane-Emden equation is a dimensionless form of Poisson’s equation for the gravitational potential of a 
Newtonian self-gravitating, spherically symmetric, polytropic fluid [9].
In case of the deformed gravity, the Lane-Emden equation should also be modified. Let us consider a self-
gravitating, spherically symmetric fluid in hydrostatic equilibrium, whose center is located at the origin [10].
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The gravitational field at r is given by:

[11]Makino, T. (2015). On the Tolman-Oppenheimer-Volkoff-de Sitter equation.
[12]R. Kippenhahn, A. Weigert and A. Weiss, Springer-verlag (Vol. 192) (1990).

Now let us consider a star which is at hydrostatic equilibrium. The equation of motion for a tar radius
is then given by:

Of course the ordinary Lane-Emden equation can be obtained from the generalized Tolman-Oppenheimer-
Volkoff equation when c goes to infinity, where c is speed of light [11,12].

where
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Applying of calculation for a hydrostatic system

H.Hassanabadi

We consider a star with radius r, mass M, and uniform density 𝜌. We consider mass 𝑀 𝑟 =
4

3
𝜋𝑟3𝜌𝑐, where 𝜌𝑐 is 

central density. Using modified gravity, the potential energy due to gravity is calculated as follows:

The pressure due to gravity is calculated from the following equation:

if 𝜌 = 𝜌𝑐, we have:
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Case of n = 0 Case of n = 1
The modified Lane-Emden equation reads:

By integrating :

And finally we have:

The modified Lane-Emden equation reads:

By integrating :

And finally we have:

Applying of calculation for a hydrostatic system

When 𝝈 goes to zero 𝑫𝒏 𝝃 → 𝜽𝒏 𝝃 .

For the deformed Lane-Emden equation, we consider the density as 𝜌 = 𝜌𝑐𝐷𝑛
𝑛 𝜉 . As a result, the deformed 

Lane-Emden equation is rewritten as follows:
1

𝜉2

𝑑

𝑑𝜉
𝜉2

𝑑𝐷𝑛 𝜉

𝑑𝜉
+ 𝐷𝑛

𝑛 𝜉 = 0
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Case of n = 0 Case of n = 1

Applying of calculation for a hydrostatic system
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Case of n = 0

Applying of calculation for a hydrostatic system

The potential due to gravity, by considering 𝜉 =
𝑟

𝑅
  ,is obtained from the following equations:

Using the following equation for the pressure due to modified gravity, we have:

Case of n = 1

Since the above integral cannot be solved parametrically, we have solved this integral for two different 
values of sigma and used the results to calculate the radius.

19/25
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Applying of calculation for a hydrostatic system

Using the Tsallis [13] distribution obtained from the inverse of the q-logarithmic function in Ref.[14] 
we have:

We intend to calculate the Fermi energy of the particle in the 3D box for the q-deformed formalism.

[13] Tsallis, C. (1988). Journal of statistical physics, 52, 479-487.
[14] Chung, W. S., and Hassanabadi, H. (2020).  Modern Physics Letters A, 35(11), 2050074.

𝑒𝑞 𝑥 = (1 + 1 − 𝑞 𝑥)
1

1−𝑞

Deformed parameter

Deformed exponential function

Position

20/25
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• The q-deformed Schrödinger equation based on the q-map: one dimensional case
WS Chung, SH Dong, H Hassanabadi The European Physical Journal Plus 139 (3), 1-15

• Parity-deformed su(2) and so(3) Algebras: a Basis for Quantum Optics and Quantum Communications Applications 
WS Chung, H Hassanabadi, LM Nieto, S Zarrinkamar, arXiv preprint arXiv:2407.12157

• Modified Lane-Emden Equation and Modified Jeans’ Instability Based Gravity with Deviation
 WS Chung, F Kafikang, H Hassanabadi, International Journal of Theoretical Physics 63 (7), 167 

• Two types of q-Gaussian distributions used to study the diffusion in a finite region
 Won Sang Chung, Luis M. Nieto, Soroush Zare and Hassan Hassanabadi

• The Dunkl oscillator on a space of nonconstant curvature: An exactly solvable quantum model with reflections
 A Ballesteros, A Najafizade, H Panahi, H Hassanabadi, SH Dong, Annals of Physics 460, 169543

• Radius of the white dwarf according to Fermi energy in a -deformed framework
 F Kafikang, H Hassanabadi, WS Chung, The European Physical Journal Plus 138 (6), 1-9

• DKP Equation in the q-deformed Quantum Mechanics
H Sobhani, H Hassanabadi, WS Chung, Few-Body Systems 64 (2), 18

H.Hassanabadi

Applying of calculation for a hydrostatic system
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Applying of calculation for a hydrostatic system

To calculate the trigonometric functions in this formalism, we first define the hyperbolic functions q-deformed 
as follows:

We intend to calculate the Fermi energy of the particle in the one box for the q-deformed formalism.

which is q-Euler formula, where q-sine and q-cosine function are defined by:

22/25

Also, the momentum and derivative operators in this formalism are defined as follows:

𝑆𝑖𝑛ℎ𝑞 𝑎⨀𝑥 = 𝑠𝑖𝑛ℎ
𝑎

1 − 𝑞
𝐿𝑛(1 + 1 − 𝑞 𝑥)𝐶𝑜𝑠ℎ𝑞 𝑎⨀𝑥 = 𝑐𝑜𝑠ℎ

𝑎

1 − 𝑞
𝐿𝑛(1 + 1 − 𝑞 𝑥)
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Applying of calculation for a hydrostatic system

We consider a star, spinless particles of mass m are located in a box of length L, where the potential is defined as 
follows:

The Schrödinger equation in three dimensions in the presence of q-deformed is rewritten as follows:

where 𝑛𝑥  is energy level, as a result, the energy is calculated as follows:

−
ℏ2

2𝑚𝑒
𝐷𝑥

2 𝑢 𝑥 = 𝐸 𝑢(𝑥)

wave functions has the following form:

𝑢𝑛 𝑥 =
2 1 − 𝑞

𝐿𝑛 1 + 1 − 𝑞 𝐿
sin 𝑛𝑥 𝜋

𝐿𝑛 1 + 1 − 𝑞 𝑥

𝐿𝑛 1 + 1 − 𝑞 𝐿
 

𝐸𝑛𝑥
=

1 − 𝑞 2ℏ2𝜋2𝑛𝑥
2

2 𝑚𝑒 𝐿𝑛 1 + 1 − 𝑞 𝐿
2

Where:

𝐷𝑥
2 = 𝑞 𝜕𝑥 + (1 + 𝑞𝑥)𝜕𝑥

2

23/25
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Fermi energy in a three-dimensional box problem in the presence of q-deformed as follows:

Applying of calculation for a hydrostatic system

The internal energy is calculated from the following equation:

The pressure due to degeneration is calculated from the following equation:

In white dwarfs, the pressure due to gravity is equal to the pressure due to degeneration, which can be used 
to calculate the radius of the white dwarf.

In white dwarfs, we have:

𝑃𝑑 = 𝑃𝑔
24/25
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Applying of calculation for a hydrostatic system

If n = 1 and 𝒒𝟎 = 𝟎. 𝟒: 

If n = 0, the radius of the white dwarf is calculated from the following equation:

(a) (b)

25/25
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Thanks for your attention
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