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1. effective Hamiltonians



l.a. idea: the (Feshbach’s) model space
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the projection-operator RECIPE:

consider projector P on a suitable model space and

split the “big” Hilbert space into two subspaces, i.e.,

partition Schrodinger equation (P + Q) H (P + Q) |y) = E(P + Q) [¢)

exclude, via projector () = 1 — P, the would-be “environment”,
QU)=QIEI-QHQI" QH|9),  |¢)=Pl)

end up with the reduced problem H.s¢(E)|¢) = E |¢p) where

H,;¢(E)=PHP + PHQ [E - QHQ] "QHP.



an intuitive guide: the split of space (P + @Q = I, dim P = 3)
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Figure 1: The decoupling of environment in sextic v(z) = 2 —[56]/25 21 + 36/25 22 .



1.b. practical implementations



a typical practical model-building strategy

the most common forms of H.s¢(E):

QO the choice of a candidate for H.;¢(E): ansatz plus fit

> trial and error amendments
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the model space separation:

# a full-space dynamical information (Hamiltonian)

Hy, Hyy ...
H = H271 HQ)Q

& is partitioned using the split P+ @Q = [ (dim P = N):

[ Hu ... Hiwy | Hiyvao o)
Hyp ... Hon | Honpr
gl U (mwﬂm
Hyi ... Hyny | Hywynt Hgop Hgq
\HNHJ . Hypn | Hypini )



Jacobi-rotation alias Lanczos’ partial tridiagonalization trick:

S=a tridiagonal Hgg a single-element couplings Hpg and Hgp in

( Hy, ... Hy 0 \
Hy_11 ... Hyon 0
"o Hy: ... Hynny | Hyngt 0
0 . 0 Hypiv | Hyviinve1 Hypingo 0
0 Hypony1 Hyvioni2 Hyionys
: 0 Hyisn+2 Hyisn+s )

@ = the information about the ()—projected environment is compactified
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physical interpretation of |N): doorway state

Hy ... Hiy. Hin 0 0

Hy_1i ... Hyvoiv—1 | Hyoaw 0

Hyi ... Hynn-oi | Hyn | Hyv41 O
0 .. 0 |Hyan| a b 0 ... 0
0 . . 0 Co as by ' :
: : 0 0
: - : k-1 ag-1 br_1
0 . . 0 0 ... 0 CK aK |
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Lemma 1 Under our assumptions, the exact effective Schrodinger operator has

the N by N matriz form

Hpgy(E)— E =

Proof. The insertion of semi-tridiagonal H in the definition of H.;¢(FE).

[ H, - E

Hy-n
Hpy

Hin_1

Hy an-1—E Hyoin

Hyn-1

Hin

G(E)

L]

Operator H.5(E) only differs from its approximate truncated analogue PHP in

a single matrix element which is a nonlinear, environment-representing function

of the energy,

G(E)=Hyn—E+ |HQ
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2. inverse problem
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2.1. key trick: continued fractions (CF)

Lemma 2 With fr+1 =0 and with CF recurrences

1

fr =

we can factorize Q (H — E)Q =U F L, with elements 1/ fr.(E) forming diagonal

matrix F, and with

[ 1 bifa 0
0 1 baofs
U=1[10 0 ’
0 0 0

ar — E — b frr1ck41

—_
()
0
-y
=
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Lemma 3 At any K < oo, the necessary Q—subspace matriz inversion (i.e., the

construction of H,.;;(E)) is trivial since, with a1 = —by fry1 and 3; = —c; f;,
_1 g Qg ... 042043...&[(_
as
U'=10 0 . . ag_ag
e
0 0 0 1
[ 1 0 . 0]
By 10  ...0
L= B30 B3 R
: . . 1 0
| Bx---B302 ... BrBr-1 Pr 1
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2.2. the CF-based formulation of inverse problem:

e assume the knowledge of G(F)

(= an “experimental” input information about dynamics)
e abbreviate Hyy = ag, Hyyi1 = bp and Hy iy = 1

e recall Lemma 1 and Lemma 2 and notice the consequence:
G(E)=ag— E—bfi(E)cr =1/ fo(E)

e reconstruct all of the unknown elements of H in recurrent manner.
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(for proof, recall just the triple partitioning),

Hy Hin- Hixn |0 0
Hy 11 ... Hyana1 | Hy-v| 0 0
Hnq Hyn_ ap bp 0 ...
0 0 c1 a; by 0
0 0 co as by :
. : 0 . 0
: : : k-1 ag-1 br_1
0 0 0 0 Cxk A
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in this notation, our present main message is the proposal of

— the existence of a |closed-form| reconstruction of matrices

QI HQW

i.e., of the environment-describing “missing” submatrix of H

ap| bp 0O
c1la; by 0
2 az by
' 0
0 cx-1 ax-1 bx-1
0 0 0 CK ax
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strictly speaking, just the unique, renormalized solutions are/can be sought

DQWHQH D!

ap  po
1 aq
0 1
0
0

0
0
0
AK-1 PK-1
1 (077¢

where p; = bjcjy1, j =0,1,..., K —1 (cf. CFs)
with diagonal D s.t. DOO = 1, Dll = 1/01, Dgg = 1/(6162), ce
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3. results
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MAIN GOAL:

the reconstruction of S((fggons tructed)

using “input info” numbers

(Ey,G(E) (= G))Y, a=0,1,...,]

will be done by solving the

coupled set of nonlinear algebraic equations

fo(B) =1/Gy, a=0,1,...0, J=2K

for the unknown environment-representing elements [ag, po, a1, p1, - .- ax|
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A. warm up: K =1

S —

aop  Po

1 aq

THE TASK = solve the three coupled polynomial equations
Ea2—|—GaEa—Ea(ao—l—al)—Gaal—l—aoal—po:O, a=0,1,2

= tool: LINEARIZATION via the change of variables

—Qp —ay =21, air =Y, Qo4 — pPo= T2
= and CONVERSION to the matrix inversion,
Goyh— Epa1 —09=E2+GuE,, a=0,12.

22




| closed-form SOLUTION at K =1

Lemma 4. The inversion of mapping {ag, a1, po} — {x1,x9, 11} has the following

nonlinear but compact form,
a =y, G =-I1—Y, po=—TYy—T2—y".
Remark 5. For negative pg (= boc; < 0) the K = 1 solution H is quasi-Hermitian.

Illustrative example 6. At K = N = 1 the quasi-Hermitian H with negative
po = —1 has real spectrum {£+/3}. Reconstructed ay = —2 and a; = 2 are
obtained from G(E) = (E? — 3)/(2 — E) yielding intermediate x; = 0, x5 = —3
and 1y = 2.
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B. the next case: K =2

a po 0O
8(2) = 1 a p1
0 1 a9
THE SET = COMPACTIFIED and LINEARIZED

—Ea3+(a2 +ap+ a1 — Gy) Eg_"((al + a2) Go — apay — aras — apag + po + p1) Eat
+ (—ara2 + p1) Go + aparas — poaz — prag =0, «a=1,2,3,4,5
ayg+ ayp+as =21, —apa;+ pp— a1a2 — apas + p1 = T2,

Qpai1as — poag — ApP1 = T3, —A1 — A2 =7Y1, Q13 — P1 = Y2

Ea2$1—|—Ea£CQ—|—SE3—Gaan1—Gayg:Eag—l—GaEa, o = 1,2,3,4,5.
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the problem is STANDARDIZED

#® by amending the input (i.e., physical information),
{EL, By, ... B5, G, G,y Gs} = {T1, 02,03, Y1, Y2 )
& and by abbreviations

p1=ap+ar+azy, p2= —apai+ po— aiay — Apaz + P1

p3 = aopaiaz — poaz — aopPr, q1 = —ap—Aaz, (@2 = a1z —pP1
yielding 2K + 1 equations, i.e., five at K = 2,

pi(ag,a1,a2) =1, pa(ag,ai,as, po, p1) = 2, p3(ao, a1, az, po, p1) = 3

Q1(a17a2) =Y, C]2(CL1, a2;ﬂ1) = Y2
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| FINAL SOLUTION at K =2

Lemma 7. At K = 2 we have

ap =Y + x1, po=—y12—y1x1+y2+x2,

—2yoy1 — Yox1 + 3+ y1° + 1’71 — Y12y S -1 W - Wl
_ 5 2 — = )
Y12+ w1 — Yo — 12 Y12 + Y121 — Yo — X9

ay =

C
(112 + y11 — Yo — 5E2)2
C = yo*y171 — 3yoy1 T3 + Yo’11” — 2yaw123 + 137+

P1=—

+y1’zs + Y17 r133 — Y12 Tays — Y1TaYeT1 — Y1TaT3 + Yo' + 2 Y2 T + Yaxa” .
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C. the FINAL SOLUTIONS at K =3 and K =4

Remark 8 At present, the reconstruction of the whole H was performed up to

K =4 and also, for some elements, up to all K.

(formulae available, in pdf format, on demand; too long to be displayed here)
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Table 1: Complete reconstructions as available, in closed form, at present.

K input info matrix elements
0 1 o)
1 T1, T2, Y1 g, a1, Po
2 X1,T2,T3 Qgp, a1, A2
Y1, Y2 Po, P1
3 T1,T9,T3,T4 ap, a1, A2, as
Y1,Y2,Ys Po, P15 P2
4 T1,T9,T3,Ty,Ts ap, a1, 02, a3, a4
Y1,Y2, Y3, Ya Po, P1, P2, P3
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D. PARTIAL SOLUTIONS at arbitrary K < oo

(sampled in a few Tables, P. T. O.)
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Table 2: Matrix elements Hysy = ag = ao(K) as reconstructed at all K.

K| 0 1 2 3 4 D

o |1 || —T1— | T1+Y1 | —T1— Y |1+ Y1 | —T1— Y1

Table 3: Reconstructed Hys pr+1Hyrr1.0 = po(K) with ag = ag(K) = (=1)%(z1+y1) (cf. Table 2).

K 1 2 3 4 5
Po | —T2+aoyr || T2+ Y2 — QoY1 | —T2 — Y2+ QoY1 | T2+ Y2 — QoY1 | —T2 — Y2+ Ao
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THE DECISIVE MERIT: STABILIZATION

.Table 4: Hpi1 41 = a1(K) — see Tables 2 and 3 for ag = ao(K) and py = po(K), respectively.

|

@ |

1 Y1

2 —y1 + (3 — apy2)/po

3 v —(z3+ys—aoy2)/po

4 || —y1 + (23 +y3 — aoy2)/po
5 y1—(v3+ys—aoya)/po

6 | —y1+ (23 +ys —aoya)/po
T oy —(z3+ys —aoy2)/po

8 || —y1 + (23 +y3 —aoy2)/po
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what is expected in the GENERAL case

Conjecture 9 The inversion of mapping ST — {21, 2o, ..., Tx41, Y1, Y2, - - YK+

has a closed rational-function form at any K.
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4. Physics of open quantum systems
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QM: particle in a potential

unitary-evolution (“closed-system”) scenario in 1D:

. d d?

(- = hleW- . b= e, zeR
or in dD:

- =B u0 . b= —Ato(), reR
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environment? why? interplay between subsystems!
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Figure 2: Different domains of bound states in 1D triple-well v(z) = 2% —[61]/252* + 36/25
(see MZ, “Arnolds potentials and quantum catastrophes”, Ann. Phys. 413 (2020) 168050).
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technical difficulties: cf. the dD coupled wells

Figure 3: 2D problem — MZ, “Relocalization switch in a triple quantum dot molecule in 2D”|
Mod. Phys. Lett. B. 34 (2020) 2050378.
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summary
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the Q-projected environment are often just the weakly coupled states

so that their reconstruction may make sense

Figure 4: Our last “realistic application” example (MZ, Polynomial potentials and coupled
quantum dots in two and three dimensions, Ann. Phys. 416 (2020) 168161).
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thanks for attention
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