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We consider the Bloch eigenvalues and spectrum of the non-self-adjoint
di¤erential operator L generated by the di¤erential expression

l(y) = (�i)ny (n)(x) +
n
∑
v=2
(�i)n�vpv (x)y (n�v )(x), (1)

of odd order n with the periodic PT-symmetric coe¢ cients, where n > 1,

pv (x + 1) = pv (x), pv (�x) = pv (x), (pv )(n�v ) 2 L2 [0, 1] .

We study the structure of the spectrum. Moreover, we �nd conditions on
the norm of the coe¢ cients under which the spectrum of L is purely real
and coincides with the real line.
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It is well-known [Rofe-Beketov (1963), McGarvey (1965)] that the
spectrum σ(L) of the operator L is the union of the spectra of the
operators Lt for t 2 (�1, 1] generated in L2 [0, 1] by (1) and the boundary
conditions

y (ν) (1) = e iπty (ν) (0) (2)

for ν = 0, 1, ..., (n� 1). The spectrum of Lt consists of the eigenvalues
λ1(t), λ2(t), ... called the Bloch eigenvalues of L. Thus, the spectrum of
L is the union of the Bloch eigenvalues for t 2 (�1, 1] and hence consists
of the sets fλn(t) : t 2 (�1, 1]g for n = 1, 2, .... which is called the nth
band of the spectrum.
If (1) is a self-adjoint expression, then the Bloch eigenvalues are the real
numbers and the bands are the intervals of the real axis. If the coe¢ cients
are arbitrary complex-valued function, then the Bloch eigenvalues are the
complex numbers and the bands are the curves lying in the complex plane.
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Note that the results and research methods for the odd case (n = 2v + 1)
di¤er signi�cantly from the results and research methods for the even case
(n = 2v). Let us brie�y explain the reason for the di¤erences. The
eigenvalues of

Lt ,εy = (�i)ny (n)(x) + ε
n
∑
v=2
(�i)n�vpv (x)y (n�v )(x)

are located in the small neighborhood of the eigenvalues of (�i)ny (n). The
operators L and Lt are denoted by L(0) and Lt (0) if p2, p3, ..., pn, are the
zero functions. It is clear that (2πk + πt)n and e iπ(2k+t)x for k 2 Z are,
respectively, the eigenvalues and eigenfunctions of Lt (0). The numbers
(2πk + πt)n for k 2 Z are the simple eigenvalues of Lt (0) and the set of
all Bloch eigenvalues of L(0) covers the real axis if n is an odd number.
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If n is an even number, then (2πk + πt)n = (�2πk + πt)n for t = 0 and
(2πk + πt)n = (2π(�k � 1) + πt)n for t = 1. Therefore, periodic and
antiperiodic eigenvalues are double eigenvalue. If t 6= 0, 1, then these
numbers are the simple eigenvalues. Thus, if n is an even number, the
periodic and antiperiodic eigenvalues are exceptional points in the
spectrum of L. However, if n is an odd number, the spectrum of L has no
exceptional points. This situation and the following property of di¤erential
operators with PT-symmetric coe¢ cients helps us prove that the spectrum
of L, under certain conditions on the coe¢ cient, is purely real if n is an
odd number. If λ is an eigenvalue of Lt , then its conjugate λ is also an
eigenvalue of Lt . On the other hand, according to general perturbation
theory, if the operator A has only one eigenvalue λ inside the circle
γ = fz 2 C : jλ� z j = δg , then for small value of ε the operator A+ εB
also has only one eigenvalue λ(ε) inside γ. If λ(ε) is not a real number,
then λ(ε) and its complex conjugate are eigenvalues of A+ εB lying inside
γ. This implies that A+ εB has two eigenvalue inside γ, which leads to a
contradiction. Thus, λ(ε) must be a real number if n is an odd number.
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The general even case is similar to the case of the Schrödinger operator
(n = 2). For example, under perturbation by an optical potential, these
double periodic eigenvalues (which can be thought of as two coinciding
eigenvalues) separate, with one periodic eigenvalue shifting to the left and
the other to the right. A di¤erent situation is observed with antiperiodic
eigenvalues: one antiperiodic eigenvalue moves up and the other moves
down.
Note that there is a large number of papers for the Schrödinger operator.
We only note that, in the �rst papers [Bender, etc. (1999)] about the
PT-symmetric periodic potential, the disappearance of real energy bands
for certain complex-valued PT-symmetric periodic potentials was reported.
Shin (2004) showed that the disappearance of such real energy bands
implies the existence of nonreal band spectra. In my papers (Veliev: Int.
J. Geom. Methods Mod. Phys. (2017) and J. Math. Phys. (2020)), I
investigated the spectrum of L in detail. I proved that the main part of the
spectrum of L is real and covers the large portion of [0,∞). However, in
general, the spectrum also contains in�nitely many nonreal components.
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Now let us discuss in detail the case when n is an odd number. First of all,
I proved that if the coe¢ cients of

(�i)ny (n)(x) +
n
∑
v=2
(�i)n�vPv (x)y (n�v )(x),

are the m�m matrices with PT-symmetric elements and m is an odd
number, then R �σ(L). However, there are eigenvalues that are not real
numbers for the following reasons. In this case, the Bloch eigenvalues
λk ,j (t) for k 2 Z , j = 1, 2, ...,m satisfy the asymptotic formulas

λk ,j (t) = (2πk + t)n + µj (2πk + t)n�2 +O(kn�3 ln jk j),

where µ1, µ2, ..., µm are the eigenvalues of the matrix P =
R 1
0 P2 (x) dx .

The entries of the matrix P are the real numbers. Therefore, P has the
real eigenvalues µ1, µ2, ..., µp and non-real eigenvalues µj = aj � ibj for
j = p+ 1, p+ 2, .., p+ q, where p+ 2q = m. If µj is a nonreal eigenvalue,
then λk ,j (t) is a nonreal Bloch eigenvalue.
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In the case of m = 1, in order to prove that all Bloch eigenvalues are real
numbers, under certain conditions on the coe¢ cient, we consider in detail
the localization of Bloch eigenvalues. Let�s divide plane C into strips:

S(N, t) = fλ 2 C : Re λ 2 [(�2πN + π + πt)n, (2πN � π + πt)n)g

and

P(k, t) = fλ 2 C : Re λ 2 [(2πk + πt � π)n, (2πk + πt + π)n)g

for jk j � N, where N be the smallest integer satisfying N � π�2C + 1 and

C =
n
∑
v=2

n�v
∑
s=0

(n� v)!



(pv )(s)




s !(n� v � s)!πv+s�2 .
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First we prove that the eigenvalues of Lt lying in P(k, t), lie in the disk

U(k, t) = fλ 2 C : jλ� (2πk + πt)n j < δk (t)g

and this disk contains only one eigenvalue of Lt , where

δk (t) :=
3
2

πn�2C j(2k + t)jn�2 .

Therefore, this eigenvalue is a real number. This means that all large
eigenvalues are real numbers.
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It remains to consider the eigenvalues lying in S(N, t). We prove that the
eigenvalues lying in S(N, t) are contained in the rectangle(

λ 2 C : jRe λj � (2πN)n, jIm λj <
p
10
3
(2N + 1)n�3/2 πn�2C

)
.

(3)
Moreover, if C � π22�n+1/2, then all eigenvalues of Lt are contained in
the disks

U(0, t) =
�

λ 2 C : jλ� (πt)n j < 1
5

πn
�
,

U(1, t) =
�

λ 2 C : jλ� (2π + πt)n j < 3
10
j2+ tjn�2 πn

�
,

U(�1, t) =
�

λ 2 C : jλ� (πt � 2π)n j < 3
10
jt � 2jn�2 πn

�
and U(k, t) for jk j > 1. The closures of these disks are pairwise disjoint
sets, each of which contains only one eigenvalue. Therefore, these
eigenvalues are real numbers.
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Now we are ready to formulate the following main results.

Theorem
(a) Each of the disks U(k, t) for jk j � N contains only one eigenvalues of
Lt . This eigenvalue is a real number.
(b) The real part σ(L)\R of the spectrum σ(L) of L is R and the nonreal
part σ(L)nR of σ(L) consists of the curves lying in the rectangle (3).
(c) If C � π22�n+1/2, then (a) is valid for all k 2 Z and σ(L) = R.
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