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The magnetic
Laplacian on the disc

Neumann realizatior

Dirichlet realization
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UNIVERSITY

The magnetic Laplacian on the disc

Let b > O strength of the magnetic field and
Hy(R) = (—iV + bA)?,

where A(z1,22) = 3(—x2,1) generating constant magnetic field
B =(0,0,1). Domain Qg := D(0,R) = {z € R? : |z| < R}.

m Dirichlet uloq, =0

= Neumann 9,ulaq, =0

Hy(R) is unitarily equivalent to R™2Hyp2 (1) = we study Hy(1)
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The magnetic Laplacian on the disc

Let b > O strength of the magnetic field and
Hy(R) = (—iV + bA)?,

where A(z1,22) = 3(—x2,1) generating constant magnetic field
B =(0,0,1). Domain Qg := D(0,R) = {z € R? : |z| < R}.

m Dirichlet uloq, =0

= Neumann 9,ulaq, =0
Hy(R) is unitarily equivalent to R™2H, 2 (1) = we study M,
Decomposing u € L*(2) as u(r,0) =Y, _, um(r)% we can rewrite

Hb - @ <Hm,b & Im):

meL

with

& 1d  (m b\’
EWZ_EE_E%+(7_E>’
acting on L2((0,1),rdr) with
= Dirichlet u(1) =0
= Neumann /(1) =0
German Miranda
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Study of the critical field H¢c, in a cylindrical
geometry by D. Saint-James (1965)

Infinite cylinder Qi of radius R, the
linearized Ginzburg—Landau
equation is given by

Neumann realization

Dirichlet realization

2m

2
{—ihV—#] u+ au =0,

with boundary condition

<— AV — 26A)’LL|3QR =0.
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Study of the critical field H¢c, in a cylindrical
geometry by D. Saint-James (1965)

Infinite cylinder Qi of radius R, the
linearized Ginzburg—Landau
equation is given by

Neumann realization

Dirichlet realization

Main result 1 ) A 2
{—ihV——i ]u+au:o,

Lower bound 2m

with boundary condition

<— AV — 26A>U|3QR =0.

(&

Cylindrical coord = Study of HT],\[,,,.
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Neumann realization

Dirichlet realization
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Study of the critical field H¢, in a cylindrical
geometry by D. Saint-James (1965)

Infinite cylinder Qi of radius R, the
linearized Ginzburg—Landau
equation is given by

2
{—ihV—%] u+ au =0,
2m c

with boundary condition

<—ihV — 26A>U|3QR =0.

(&

Cylindrical coord = Study of Hﬂ]\{,b.

m Special functions. Hard!

m Numerical computations
(Calculateur électronique)
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Neumann realization

Dirichlet realization

UNIVERSITY

Study of the critical field H¢, in a cylindrical
geometry by D. Saint-James (1965)

T L
Infinite cylinder Qg of radius R, the - | —
linearized Ginzburg—Landau R
equation is given by

2
{—ihV—%] u+ au =0,

2m

with boundary condition Al

<—ihV— Q’ZA>u|aQR =0. H m|a
o, = —

Cylindrical coord = Study of H} ,. ’ ch
o1/ 2mR%q|

. . Hey ~ !
m Special functions. Hard! 2eR? h?

m Numerical computations Example:
(Calculateur électronique)

f(h) = ©oh = He, ~ }gf? .
0
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lowet

ound

LUN
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Eigenvalues of the magnetic Dirichlet Laplacian with

constant magnetic field on discs in the strong field
limit

Dirichlet case can be reduced to
finding roots of special functions or
using variational methods.
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Eigenvalues of the magnetic Dirichlet Laplacian with

constant magnetic field on discs in the strong field
limit )

Dirichlet case can be reduced to
Neumann realizaior finding roots of special functions or
Dirichlet realization . . .

e using variational methods.

m 1996 Erdos n =1,m =0and € >0

C _(Lie)bR? 1 _bR2
b+ﬁ(;)e (z+opR SAl(HIE,)b(R))Sb+Cz(W+bR2>e 5.

,,,2
Upper bound: trial state e” @ and suitable cut off.
Lower bound: Birman—Schwinger principle.
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Neumann realizatior

Dirichlet realization

UNIVERSITY

Eigenvalues of the magnetic Dirichlet Laplacian with
constant magnetic field on discs in the strong field
limit Aa)

Dirichlet case can be reduced to
finding roots of special functions or
using variational methods.

m 1996 Erdos n =1,m =0and € >0

. L . 1 _bR?
bt G < HER) < 0+ Co g+ )

,,,2
Upper bound: trial state e” @ and suitable cut off.
Lower bound: Birman—Schwinger principle.

m 2017 Helffer and Sundqvist n =1 and m > 0

bm+2R2(1+m) B bR2

M (HE ,(R) = b+ e (14+007Y).

2mm)!
2

Upper bound: trial state u,(r) = rm(e%(R2’r2) - e’%(RQ’rz)).

Lower bound: Temple inequality.
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Neumann realization

Dirichlet realization

Main result

Upper bound

ound

Lowet

LUN

UNIVERSITY

Eigenvalues of the magnetic Dirichlet Laplacian with
constant magnetic field on discs in the strong field
limit

m 2024 Baur and Weidl, n € N and m € Z

An(Hyy(R)) = (20— 1+ [m| — m)b
bR2 b2n+mR2(2n+m—1)
(n— 1Dl (m+n — 1)122(r—1+m

+e

1+00Bb™h).
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Neumann realizatior

Dirichlet realization

LUND

UNIVERSITY

Eigenvalues of the magnetic Dirichlet Laplacian with
constant magnetic field on discs in the strong field
limit

m 2024 Baur and Weidl, n € N and m € Z

An(Hyy(R)) = (20— 1+ [m| — m)b
bR2 b2n+mR2(2n+m—1)
(n— 1Dl (m+n — 1)122(r—1+m

+e (1+00™h).

Idea of the proof: Reducing the problem to find A solving the implicit

equation
1 A bR?

where M (a, b, z) is Kummer's confluent hypergeometric function.
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Neumann realizatior

Dirichlet realization

UNIVERSITY

Eigenvalues of the magnetic Dirichlet Laplacian with
constant magnetic field on discs in the strong field
limit

m 2024 Baur and Weidl, n € N and m € Z

An(HE 4(R)) = (2n — 1 4 |m| — m)b

_ bR2 b2n+mR2(2n+m—l)

e (n—l)!(m+n—1)!22<n—1>+m(1+0(b*1)).

Idea of the proof: Reducing the problem to find A solving the implicit

equation
1 A bR?
M<§(|m| -m+1-— g>,|m|+1,7) =0,

where M (a, b, z) is Kummer's confluent hypergeometric function.

For Neumann is more complicated, for m > 0 we have

1A b 1/ A b\
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Neumann realization

Dirichlet realization

Main result

Upper bound

Lower bound

951y
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Neumann magnetic Laplacian on the disc for strong
constant magnetic field

AN

2 1d m  br OASH
H’n]\’{b: +( « .‘?"’

with

D(Hﬁ,b) ={u: u,u/r, u/,Hf,\{’bu S Lz((O7 1),rdr), u'(1) = 0},
for m # 0, and

D(Hpy) ={u: u, Hopu € L*((0,1),rdr), v'(1) =0 and lim ulr) _ 0}.
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Neumann realizatior

Dirichlet realization

Main result

Upper bound

951y

LUN
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Neumann magnetic Laplacian on the disc for strong
constant magnetic field

7K\ K
Let o W&\(\v}%,/
N 2 1d [(m b\® ANy 4
Hm"’__ﬁ_?dﬁ(?‘?) ]
with ! : 5 . ;
D(HY ) ={u: u,u/r, ', HY yu € L*((0,1),rdr), u'(1) = 0},
for m #£ 0, and

D(Hé\fb) ={u: u, Hopu € L*((0,1),rdr), v’ (1) = 0 and

Remark

We consider m > 0 since for m < 0

German Miranda

HY , = HY,, , + 2/mlb.

Magnetic Laplacian on the disc for strong constant magnetic fields

lim M
r—0+ Inr

=0}.
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Main result and scheme of the proof

Theorem
Neumann reaizator Given n € N and m € 7Z, if b — 400, it holds that

Dirichlet realization

A(HR ) = (20 — 1+ [m| — m)b

b b2n+m
2

~ ¢ oDl (m A n— 122G Dim (1 + O(b_l))-
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Main result and scheme of the proof

Theorem
Neumann reaizator Given n € N and m € 7Z, if b — 400, it holds that

Dirichlet realization

M(HY o(R)) = (2n — 1 + |m| — m)b

2n+m p2(2n+m—1)
s T 1+007")).
(n — D!(m +n — 1)!122(r=D+m

Main result
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Main result and scheme of the proof

Theorem
Neumann reaizator Given n € N and m € 7Z, if b — 400, it holds that

Dirichlet realization

M (Hi p(R)) = (2n — 1 4 |m| — m)b

b p2rtm p2(2ntm—1) .
2
e Dl t 0 D2 (1 +O(b )>-

Main result
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realization

Main result
Upper bounc

UNIVERSITY

Main result and scheme of the proof

Theorem
Givenn € N and m € Z, if b — +oo, it holds that

An(HY ) = 20— 1+ m] — m)b
b2n+m

(n — DI(m +n — 1)122(—D+m (1 + O(b‘l)).

_b
2

— €

Scheme of the proof: Trial state

2
Umn(r) := 7" Ly (b%) (Cmga*ﬁ) + 0267%(142)),

where C1, C are constants to determine such that um,n € D(Hnjib) and
Lyt | are the associated Laguerre polynomials.

m Upper bound: Rayleigh—Ritz variational formula (min-max principle)

m Lower bound: Temple inequality
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Main result

Upper bounc
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Main result and scheme of the proof

Theorem
Givenn € N and m € Z, if b — +oo, it holds that

A(HR ) = (20 — 1+ [m| — m)b

_% b2n+m ) O b_l
- (n— 1)/ (m +n — 1)122(r=1)+m +0(07) ).

Scheme of the proof: Trial state

2
) =1 () (Cueh 0 4 om0,

where C1, C are constants to determine such that um,n € D(Hnjib) and
Lyt | are the associated Laguerre polynomials.

Remark
br?2

Let f(r) = r™e o« L™ 1(br?/2), then Hp o f = (2n — 1)bf.
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Dirichlet

Main result

Uppe

LUND

UNIVERSITY

Boundary conditions

Neumann:

/
Um,n

and for b —
Ci=1and

German Miranda

)l

B (B —m)Lr(B) — (L
W =0=C= T (&) v oLy

b
3)
5 C1,
2

(
~1)'(3)

400, we have C2 = (14 O(b"))C1, so we can take

Cz(b) =1+ (’)(b_l).

Magnetic Laplacian on the disc for strong constant magnetic fields
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Main result

Uppe

LUND

UNIVERSITY

Boundary conditions

Neumann:
(% - m)fol(%) —b(Ly-1)'(

uinn(l) =0=Cy =
(g +m)LW71(%) +0(Ly)'(

Cy,

NN o
N>

)

and for b — +00, we have Cz = (1+ O(b™"))C4, so we can take
Cr=1and Co(b) = 1+ 0B ).

Dirichlet:
um,n(l) =0=0C=-C4

Remark

Robin boundary condition uy, ,,(1) = Yum,n (1) with v € R will be
analogous to the Neumann case for fixed parameter -y.
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUND

UNIVERSITY

The Rayleigh—Ritz variational method

By min-max principle

HY yu,u

)\n(Hf,\;b): min max M#
UCD(HY ) u€U\{0} (u,u)
dimU=n
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUN

UNIVERSITY

The Rayleigh—Ritz variational method

By min-max principle
HY yu,u
)\n(Hf,\{,b) = min max w
UCD(HY ) u€U\{0} (u,u)

dimU=n

® {Um,1,.-.,Umn,n} Spans a subspace of dimension n.
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUND

UNIVERSITY

The Rayleigh—Ritz variational method

By min-max principle

u {um,l, .o

An(Hpb)

German Miranda

An(Hpp) = m

<H7]7\7{,bu7 u)

in max —————
UCD(HY ) u€U\{0} (u,u)

dimU=n

., Um,n } SPans a subspace of dimension n.
b2n+m

ol

< (2n—1)b—e"

Magnetic Laplacian on the disc for strong constant magnetic fields

(n — D!(m+n — 1)122(r—D+m (

14007 Y).
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The Temple inequality

Theorem (Temple inequality)
Let u € D(A) \ {0} and suppose that there exists u,v € R such that

An—1(4) < p < <j|4|1:|’|;t> <v < Any1(4),

e (Au, u) — || Aul® (Au, u) + || Aul®
v(Au,u) — || Au —pu(Au,u) + ||Au
WA Y — IR 3 (4) < J .
v|ull* = (Au,u) — & —pllull? + (Au, u)
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Main result
Upper bound

Lower bound

UNIVERSITY

The Temple inequality

Theorem (Temple inequality)
Let u € D(A) \ {0} and suppose that there exists u,v € R such that

Ao (A) S p< <ﬁZ|’|;‘> < v < Anpa(A),
) — AP (A ) + [ Au?
vlull? = (Au,u) Snd) < —pllul|? + (Au,u)
For all i € N,

(Ai(A) = An(A)) (i (A) = v){u,9:)* > 0,
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The Temple inequality

Theorem (Temple inequality)
Let u € D(A) \ {0} and suppose that there exists u,v € R such that

da) << 5 < <),
Lower bound then o (Au, ) — ||Au||2 oty ”Au”2
vlull? = (Au,u) Snd) < —pllul|? + (Au,u)
For all i € N,

(i (A) = A (AN (A) = v)(u, @i)* 2 0,

DAY (1, 00)” = Cun(A)+0) D Xiws 00+ An (A D {u, 0)* >0,
LUND ’ '

7
UNIVERSITY
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The Temple inequality

Theorem (Temple inequality)
. Let w € D(A) \ {0} and suppose that there exists j,v € R such that
(Au, u)

el

An-1(4) <

n< <v < At1(4),

Main result
Upper bound

Lower bound

then
v{Au, u) — ||Au|®
vull? — (Au, u)

—p(Au, u) + || Aul)?

< An(A) < :
S An(A) S Tl 1 ()

For all i € N,

(Ai(A) = An(A)) (i (A) = v){u,9:)* > 0,

[Aul® = (An(A) +v){Au, u) + An(A)v]|u]* > 0.

LUND

UNIVERSITY
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The Temple inequality

Neumann realizatior Suppose that there are v 41, tn—1 > 0 and a trial state

Dirichlet realization u e D(Hﬁ,b) \ {O} satisfying

Main result <HN U U>

Upper bound )\n_l(Hng) < Pn—1 < mo < Un+1 < )‘n-‘rl(HT]r\:,b)»

[lul?

Lower bound

then we get the following bound from below

Vn+1<H'r]r\{,bua u) — <H11r\{,bu> H%,b“)

v [[ull? = (o, )

S AW(H’VIX,IJ)7

for n € N.

LUND

UNIVERSITY
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Neumann r

Dirichlet re

Lower bound

LUND

UNIVERSITY

The Temple inequality

Suppose that there are vy41, tin—1 > 0 and a trial state
u € D(HY ;)\ {0} satisfying
<H7]7\i,bua u)

Aot (Hpp) < iy <~
! ! [lul?

< Vngt < Ang1(HN ),

then we get the following bound from below

Vn+1<H7]X,bua u) — <Hﬁ,bu, Hﬁ,b“)

v [[ull? = (o, )

S An(Hﬁ,b)z

for n € N.
For pin—1 we can use the upper bound we found before.
We need to find a rough lower bound vp1.
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Rough lower bound

Proposition

Neumann realization

Dirichlet realization For any integer m > 0, there exist C, by > 0 such that, for
n=1,2,3,... and b > by, we have

Main result N

Upper bound )\n(Hm,b) 2 (2n — 1)b — C

Lower bound

LUND

UNIVERSITY
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Upper bound

Lower bound

LUND

UNIVERSITY

Rough lower bound

Proposition

For any integer m > 0, there exist C, by > 0 such that, for
n=1,2,3,... and b > by, we have

An(Hpmp) > (20— 1)b - C.

Idea of the proof: let u € D(H,I,\{’b), consider a partition of unity
{xa, x2} with x5 € C(R; [0, 1]),

3 1
supp x1 C (_007 4>> supp x2 C (§,+OO),

and x? 4+ x% = 1. This relates H,],\;b g/vith two self-adjoint operators with

Dirichlet boundary condition at 7 = § and r = % respectively.
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Upper bound

Lower bound

LUND

UNIVERSITY

Rough lower bound

Proposition

For any integer m > 0, there exist C, by > 0 such that, for
n=1,2,3,... and b > by, we have

An(Hpmp) > (20— 1)b - C.

Idea of the proof: let u € D(H,I,\{’b), consider a partition of unity
{xa, x2} with x5 € C(R; [0, 1]),

3 1
supp x1 C (_007 Z>> supp x2 C (§,+OO),

and x7 + x5 = 1. This relates H] , with two self-adjoint operators with

Dirichlet boundary condition at 7 = 2 and r = 1 respectively.

1 2
B U1 i=(2n—1)b—C.
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUN

UNIVERSITY

Computation of the lower bound

Vn+1<

Hnj\{,bum,na um;”) - <Hﬁ,bum,nv Hnl\zf,bum,n>

Va2 = CHY gt o)

B =02n—1)b—-C

German Miranda

Magnetic Laplacian on the disc for strong constant magnetic fields

S A”(‘E[ﬁ,b))
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUND

UNIVERSITY

Computation of the lower bound

Un+1 <Hnj\{,bum,na umJL> - <Hﬁ,bum,nv Hnl\zf,bum,n>
Vst Tt — G oy )

S A”(‘E[ﬁ,b))

B =02n—1)b—-C

M

(m+n—1)12™ b +O(b2n—2)

® [um,nl? = eI (n_1)1 ©
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Computation of the lower bound

Neumann realization

Dirichlet realization yn+1<Hn]\{7bum,n, Um, n) — <Hﬁ pUm,n, Hrjx bum,n> <A (HN )
Ut [t 2 = CHY i, ) I
P
Lower bound B VUptl = (271 - 1)b -C
2 (m4n-1)12™ b o2
8 i 2 = AR Y o(p2n2)

m (Y s o) = (20 = Dbl[im,n | = stz + OB 72).

LUND

UNIVERSITY
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

LUN

UNIVERSITY

Computation of the lower bound

Un+1 <Hnj\{,bum,n7 um,n) - <Hﬁ,bum,ny Hﬁ,b“mm)
Vs Tt IF = (Nt )

S AT'L(‘Elrlr\{,b))

Unt1=(2n—1)b—-C
_ (m4n-—1)12™ % +O(b2n—2)

[ e oML (1)1 €

(HY iy wmn) = (20 = Dbl[tm,nl|? — gzt

22T =2 ((n_1)1)Z + O(b2n72).

(Hm,pUm,n, Hm ptUm,n) lower order terms
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Dirichlet

Main result
Upper bound

Lower bound

LUND

UNIVERSITY

Computation of the lower bound

Vn+1<Hn]\{,bum,nvum,n> - <Hﬁ,bum,nv Hnl\zf,bum,n>
Vnl[tmnll? = (HY ytim,n, tm )

S An(Hﬁ,b%

B =02n—1)b—-C
—1)12m b —
B umnll® = G thre? + 0" ?)
on—1 .
= <H7]X,bum,naum,n> = (2n — 1)bl|um,a[* — W*ZGT)!)"‘ + 0" 2).
8 (Hp pUm,n, Hm pUm,n) lower order terms

Combining the terms above we get
b2n+m
(n—1)!(m +n — 1)122(n=1)+m

(2n—1)b—e "% (1+0(b™) < Aa(H ).
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Related results

m Eigenvalue asymptotics for the disc, as b — 400

Neumann realizatior

M (HY,D(0,1)) = ©b— C1Vb + O(1).

Moreover, b +— A1 (HZ, D(0, 1)) is strictly increasing for large b > 0
(Bauman, Phillips, Tang, Helffer, Morame, Fournais)

Related results

LUND

UNIVERSITY
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Related results

UNIVERSITY

Related results

m Eigenvalue asymptotics for the disc, as b — 400
M(HY , D(0,1)) = Qb — C1Vb + O(1).

Moreover, b +— A1 (HZ, D(0, 1)) is strictly increasing for large b > 0
(Bauman, Phillips, Tang, Helffer, Morame, Fournais)

m Eigenvalue asymptotics for the complement of the disc, as b — 400
M (HY , D(0,1)°) = 60b + C1 Vb + O(1).

(Helffer, Morame)
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Related results
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Related results

m Eigenvalue asymptotics for the disc, as b — 400
M(HY , D(0,1)) = ©ob— C1Vb + O(1).

Moreover, b +— A1 (HZ, D(0, 1)) is strictly increasing for large b > 0
(Bauman, Phillips, Tang, Helffer, Morame, Fournais)

m Eigenvalue asymptotics for the complement of the disc, as b — 400

M (HY , D(0,1)°) = 60b + C1 Vb + O(1).

(Helffer, Morame)
m Eigenvalue asymptotics for the complement of the disc, as b — 0"
N c R k1 ot 3
Ai(H, ,D(0,R) ):b—mb +0(b""2).

(Kachmar, Lotoreichik, Persson Sundqvist)
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Neumann realization

Dirichlet realization

Main result
Upper bound

Lower bound

Related results

Thank you for your attention.
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