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1D stationary Dirac equation

X

T 09123 - Identity matrix, Pauli matrices

Maurice Dirac
(1902-1984)

AAMP-2024 Og = 0 1

IIH‘ -

®




AAMP-2024

Basic Potential W

Symmetric with respect to the origin




® Effective

Y 1D stationary Schrodinger equation

:’gﬁ- dw 2m
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Effective Energy
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AAMP-2024 Effective Schrodinger potential

Weakly singular asymmetric g V. — W2+ chW'
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° A.M. Ishkhanyan, V.P. Krainov, “Conditionally exactly solvable Dirac potential
including x3 pseudoscalar interaction”, Phys. Scr. 98 6



Dirac pseudoscalar interaction potential in the

AAMP-2024 - "
positive semi-axes X >0
chl6 W,
W = +—E W, x
X X
For a positive W, this potential forms a potential well.
The strength of this term defined by the value of the parameter
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Expressing ¥, from the first equation ) E + mc2

Substituting it into second
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IEDX —ich—2 d% —iWy, = (E-mc?)y,

Expressmg /1 from the second equation
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Two effective Schrodinger [\~
potentials for the region x>0 (¥«

Effective Schrodinger Potential

57 W2+2chW /3 WW, W,/ 5

__ n + X
1
72mx? 2me? x%'3 mc®>  2mc

Particular case of the first Stillinger potential
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This potential is attractive in the vicinity of the origin
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2 Two effective Schrodinger [\
potentials for the region x>0 (¥«

Effective Schrodinger Potential
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Particular case of the second Exton potential
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This potential is repulsive in the vicinity of the origin
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Effective Schrodinger potentials ‘gﬁw
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Solution and bound states




Solution of the Schrodinger equation for the
first Stillinger potential

d°y, 2m(
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Wave function for bound states on the
interval X e (0,+x)

X —0:

W, = C X1/6 a—(z- ) /ZHa_l(Z_A)
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Two wave function components are not
Independent
They are connected via the following relations

Wy, +ichy,
E —mc?

_ Wy, —ichy,
E +mc?

W, = )

The relation between wave function components
does not allow

A =0

It Is impossible !!
Why?
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Wave component ¥/
2
Ce* 2 (A 1/2 716
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has a singularity at the
A0 = v, (X) origin

A fundamental requirement of quantum mechanics is

that the wave function is finite everywhere

Ay

must be zero
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avponos  EXact elgenvalue equation for the
bound state energy spectrum
A, =0:
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Approximate energy spectrum when W, =0
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aaMP-2024 - Approximation of the eigenvalue equation

For high-lying levels, one can apply the Airy-function approximation to
the Hermite function for the left transition region —A ~ —/2a
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Approximate spectrum with the potential term \y, x~%/3
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The dependence of )

on energy
Ym
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Discussion

We have examined an analytically solvable pseudoscalar interaction
potential for the one-dimensional stationary Dirac equation

The general solution to the Dirac equation is written in terms of non-
Integer index Hermite functions and confluent hypergeometric functions

We have derived the exact equation for the energy spectrum, developed
an approximation for the spectrum

. . -1/3
Our results demonstrate that the inclusion of the X term has a
significant impact on the energy spectrum and eigenfunctions,
particularly, on the low-lying energy levels.

These results indicate that the pseudoscalar interaction potential with an
x U3 term can be used to model a variety of physical systems,
particularly low-dimensional systems such as graphene, semiconductor

_nanostructures, or topological insulators, where relativistic effects and

confinement are significant factors
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Future Directions

v" Addition of \Vector Potential

v" Scalar Potential

v Thecase X <0

v

v Applications
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