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1.– Introduction & Motivation

Due to the importance of a unified theory of quantum mechanics + gravity, and
the existence of a minimal length (Planck scale), we consider

A modified Schrödinger equation from a generalized uncertainty principle
(GUP), with a quantum mechanically corrected gravitational interaction. The
resulting equation cannot be solved by common exact approaches ⇒ a
Bethe-ansatz approach.

Dirac equation with a generalized gravitational interaction which includes
post-Newtonian (relativistic) and quantum corrections to the classical
potential.
The Bethe-ansatz approach is also proposed to attack this challenging
problem.
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2.– Quantum Correction to the Coulomb Potential in GUP

Several theories provide a unified description of quantum mechanics and gravity:
quantum gravity, black hole physics, double special relativity, string theory...

The common point in such theories is that they all predict the existence of a
minimal length of the Planck scale

ℓp =
√

ℏG/c3.

This minimal length is equivalent to a generalization of the uncertainty principle
(GUP) that affects the entire physical system.

From the mathematical point of view, in a GUP formalism the Schrödinger
equation is of higher order four, six or more, depending on the choice of the GUP
and the operators involved.

Obviously, those are not well studied problems in mathematical physics, where the
differential equations that appear, whether relativistic or non-relativistic, are of the
first or second order.
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2.– Quantum Correction to the Coulomb Potential in GUP

On the other hand, the Coulomb/Kepler potential is obviously the most physical
interaction in common with gravity and quantum mechanics.

The quantum Coulomb interaction remains an attractive and challenging field of
study and very recent articles continue to discuss related properties.

It has been shown that the quantum correction of Coulomb potential will contain
inverse quadratic, cubic and quartic terms.

This is of particular interest to us: what we are going to do next is to analyze this
type of corrected Coulomb potential that includes negative powers up to the
fourth order, which we will call Coulomb–4 potential, within the GUP formalism.

Roadmap:
(a) Schrödinger equation modified with GUP formalism is reviewed compactly;
(b) Solutions to the ordinary case (without GUP) using the Lie algebraic
approach and Heun functions are investigated;
(c) Solution to the modified GUP problem are explored;
(d) Ground and first excited states are explicitly determined.
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2.– Quantum Correction to the Coulomb Potential in GUP

We start considering a generalized uncertainty principle (GUP) of the form

[xG , pG ] = iℏ
(
1 +

β

2ℏ2
p2
)
, 0 ≤ β ≤ 1,

where β is the original minimal length parameter.

The generalized x operator is defined as xG = x , with x and p being the ordinary
position and momentum operators, respectively.

In one spatial dimension, and neglecting some high order terms, the above GUP
corresponds to the modified Schrödinger equation(

− d2

dx2
+ Ve(x)

)
ψG
n (x) = 0,

with an effective potential

Ve(x) :=
2m

ℏ2
(
V (x)− EG

n

)
+

(
2m

ℏ2

)2

β (V (x)− En)
2
,

with En the β = 0 eigenvalues of the energy and EG
n the eigenenergies for β ̸= 0.
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2.– Quantum Correction to the Coulomb Potential in GUP

We are interested in analyzing a specific problem that could be of great physical
interest: the following quantum correction to the Coulomb interaction that
includes negative powers up to fourth order, that we will call Coulomb–4 potential:

2m

ℏ2
V (x) =

α1

x
+
α2

x2
+
α3

x3
+
α2
4

x4
, α4 > 0, α1 < 0,

which corresponds to the effective potential

Ve(x) = γ0 +
γ1
x

+
γ2
x2

+
γ3
x3

+
γ4
x4

+
γ5
x5

+
γ6
x6

+
γ7
x7

+
γ8
x8
,

in which the γi , i = 0, 1, . . . 8 are as follows

γ0 = βϵ 2
n − ϵGn , γ1 = α1

(
1− 2βϵn

)
,

γ2 = α2 + β
(
α2
1 − 2α2ϵn

)
, γ3 = α3 + 2β (α1α2 − α3ϵn) ,

γ4 = α2
4 + β

(
2α1α3 + α2

2 − 2α2
4ϵn

)
, γ5 = 2β(α1α

2
4 + α2α3),

γ6 = β
(
2α2α

2
4 + α2

3

)
, γ7 = 2βα3α

2
4, γ8 = βα4

4,

where we have introduced the notation

ϵn =
2m

ℏ2
En, ϵGn =

2m

ℏ2
EG
n .
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1− 2βϵn

)
,

γ2 = α2 + β
(
α2
1 − 2α2ϵn

)
, γ3 = α3 + 2β (α1α2 − α3ϵn) ,

γ4 = α2
4 + β

(
2α1α3 + α2

2 − 2α2
4ϵn

)
, γ5 = 2β(α1α

2
4 + α2α3),

γ6 = β
(
2α2α

2
4 + α2

3

)
, γ7 = 2βα3α

2
4, γ8 = βα4

4,

where we have introduced the notation

ϵn =
2m

ℏ2
En, ϵGn =

2m

ℏ2
EG
n .
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2.– Quantum Correction to the Coulomb Potential in GUP

This problem only makes sense in the half-line, that is, x is always positive and at
the origin it is assumed that there is an impenetrable infinite wall that prevents
the passage of the particle in the other direction.

Before continuing, it is worth briefly commenting on the choice Coulomb–4
interaction:

• The first term is the ordinary Coulomb or gravitational potential:
α1

x

• The second term,
α2

x2
, is usually considered to be the relativistic correction to

the gravitational problem and includes the speed of light, c .

• Regarding the quantum correction, there is not a quite unified approach, but

almost all existing ones include the inverse cubic term
α3

x3
as the necessary

correction to the gravitational potential.

It should be noted that both the sign and the value of the parameters are quite
different in several articles, which motivates further studies.

Let us start the analysis of the ordinary case (β = 0), as the solutions of the
model with GUP depend on them.
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2.– Quantum Correction to the Coulomb Potential in GUP

The ordinary case β = 0 (not GUP) has already been studied via the ansatz
method. Here, we will obtain the general solutions of the model using the
Lie-algebraic method within the framework of quasi-exact solvability.

The Schrödinger equation with Coulomb–4 potential appears in the form(
− d2

dx2
+
α1

x
+
α2

x2
+
α3

x3
+
α2
4

x4
− ϵn

)
ψn(x) = 0.

Due to the asymptotic behavior of the wave function ψn(x), we use the ansatz

ψn(x) = xδ exp
[
−
(
x
√
−ϵn +

α4

x

)]
φn(x), δ = 1 +

α3

2α4
> 0,

which transforms Schrödinger equation (9) into the form{
−x2

d2

dx2
− 2

(
α4 + δ x −

√
−ϵn x2

) d

dx
+ (λ1 x + λ2)

}
φn(x) = 0,

where

λ1 = α1 +

(
2 +

α3

α4

)√
−ϵn, λ2 = α2 −

α2
3

4α2
4

− α3

2α4
+ 2α4

√
−ϵn.
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2.– Quantum Correction to the Coulomb Potential in GUP

We are going to analyze the problem from two different and complementary points
of view: first the Lie algebraic approach and then we will use the Heun functions.

The Lie-algebraic approach: Following the standard idea of quasi-exact
solvability, we find that if the constraint

λ1 = −2n
√
−ϵn

holds, the Schrödinger equation can then be expressed as a quasi-exactly solvable
(QES) differential operator in the Lie-algebraic form

Hqes φn(x) = 0,

with

Hqes = −J +
n J−

n + 2
√
−ϵn J +

n − 2α4 J−
n −

(
2δ + n

)
J 0
n − n2

2
− nδ + λ2 .

Here,

J +
n = x2

d

dx
− n x , J 0

n = x
d

dx
− n

2
, J−

n =
d

dx
,

are the generators of the sl(2) Lie algebra satisfying the commutation relations

[J +
n ,J−

n ] = −2J 0
n , [J±

n ,J 0
n ] = ∓J±

n .
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2.– Quantum Correction to the Coulomb Potential in GUP

These operators leave invariant the (n+1)-dimensional linear space of polynomials

φn(x) =
n∑

k=0

ck x
k ,

where the coefficients ck satisfy the three-term recursion relation (c−1 = cn+1 = 0)

ck+1 =
(λ2 − 2k δ − k(k − 1)) ck − 4

√
−ϵn ck−1

2(k + 1)α4
, k = 0, 1, . . . , n,

assuming c−1 = 0 and cn+1 = 0.

Equivalently, the recursion relation (11) can be
rewritten as a tridiagonal matrix equation the nontrivial solutions of which are∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2 −2α4

−2n
√
−ϵn (λ2 − 2δ) −4α4

−2(n − 1)
√
−ϵn

. . .
. . .

. . .
. . . −2nα4

−2
√
−ϵn (n − n2 + λ2 − 2n δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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2.– Quantum Correction to the Coulomb Potential in GUP

Note that the last condition imposes severe restrictions on the potential
parameters αi , i = 1, 2, 3, 4.

On the other hand, from the expressions of λ1 and λ2 the following expression of
the energy in closed form can be obtained

ϵn = − α2
1 α

2
4

(α3 + 2(n + 1)α4)2
,

provided α1 < 0.

For the sake of clarity, next we will find the explicit solutions of the ground state
and the first excited state.
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2.– Quantum Correction to the Coulomb Potential in GUP

Ground state and the associated wave function

ϵ0 = − α2
1 α

2
4

(α3 + 2α4)2
, ψ0(x) = c0 x1+α3/(2α4) exp

[
−
(
x
√
−ϵ0 +

α4

x

)]
,

where the restriction on the parameters of the potential is determined by

4α2 α
2
4 − α2

3 − 2α3 α4 + 8α3
4

√
−ϵ0 = 0.

α1 = −1/10
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2.– Quantum Correction to the Coulomb Potential in GUP

To better capture the meaning of the analytical results found above, next Figure
represents:

On the left, the wave function
of the ground state, together
with the corresponding energy,
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2.– Quantum Correction to the Coulomb Potential in GUP

First excited state (n = 1) and the associated wave function
The energy and the corresponding wave function are given by

ϵ1 = − α2
1 α

2
4

(α3 + 4α4)
2 , ψ1(x) = (c0+c1x) x
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2.– Quantum Correction to the Coulomb Potential in GUP

The next Figure represents:

On the left, the wave function
of the first excited state, together
with the corresponding energy,
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2.– Quantum Correction to the Coulomb Potential in GUP

The ordinary case as a double-confluent Heun equation: By changing the
independent variable y = 2

√
−ϵn x , the Schrödinger differential equation{

−x2
d2

dx2
− 2

(
α4 + δ x −

√
−ϵn x2

) d

dx
+ (λ1 x + λ2)

}
φn(x) = 0,

is transformed into the double-confluent Heun equation{
y2 d2

dy2
+
(
−y2 + ρ y + η

) d

dy
− (ω y + λ2)

}
φn(y) = 0,

in which we denote ρ = 2 + α3

α4
, η = 4α4

√
−ϵn, ω = 1 + α1

2
√
−ϵn

+ α3

2α4
.

Its regular solutions at origin are given by (h0 = 1)

φ := φn(y ; ρ, η, ω, λ2) =
∞∑
n=0

hn x
n,

hn+2 =
(λ2 − n(n + ρ+ 1)− ρ) hn+1 + (n + ω) hn

(n + 2)η
and h1 =

λ2
η

h0 ,

Consequently, φ can admit polynomial solution of degree m if (m + ω) and hm+1

vanish simultaneously. In this way, general solutions to the problem can be
obtained in terms of the associated Heun functions.
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2.– Quantum Correction to the Coulomb Potential in GUP

The GUP case, β ̸= 0.
Having obtained the solutions of the Coulomb–4 model without GUP in the
previous section, let us now return to the modified Schrödinger equation in a
formalism with GUP, that is, to the equations[
− d2

dx2
+ Ve(x)

]
ψG
n (x) = 0, Ve(x) :=

2m

ℏ2
(
V (x)− EG

n

)
+

(
2m

ℏ2

)2

β (V (x)− En)
2
,

To ensure proper asymptotic behavior of the wave function ψG
n (x), after

inspecting the differential equation we propose the following ansatz

ψG
n (x) = x f eg(x) φG

n (x), g(x) = −a x − b

x
− c

x2
− d

x3
,

where φG
n (x) must be a polynomial and the parameters; a > 0 , b , c , d > 0, f > 0

are still unknown, but must be such that the original function ψG
n (x) is square

integrable.
It can be seen that the previous parameters are determined by:
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2.– Quantum Correction to the Coulomb Potential in GUP

a =
√
γ0 =

√
βϵ2n − ϵGn > 0, b = −γ

2
7 − 4γ6 γ8
8 (γ8)3/2

= α2

√
β,

c =
γ7

4
√
γ8

=
1

2
α3

√
β, d =

√
γ8

3
=

1

3
α2
4

√
β,

f = 2 +
8γ5 γ

2
8 − 4γ6 γ7 γ8 + γ37
16 (γ8)5/2

= 2 + α1

√
β > 0 .

Then, the differential equation for φG
n (x) simplifies to{

P4(x)
d2

dx2
+ Q4(x)

d

dx
+W3(x)

}
φG
n (x) = 0,

where

P4(x) = x4,

Q4(x) = 6d + 4c x + 2b x2 + 2f x3 − 2a x4,

W3(x) = (b2 − 6ad + 4cf − 6c − γ4) + (2(bf − b − 2ac)− γ3)x

+(f (f − 1)− 2ab − γ2)x
2 − (γ1 + 2af )x3.
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2.– Quantum Correction to the Coulomb Potential in GUP

To find the solution φG
n (x) we use the general Bethe ansatz method, looking for

polynomial solutions of the form

φG
n (x) =


1, n = 0,

n∏
i=1

(x − xi ), n ∈ N,

where xi are distinct roots to be determined.

After some calculations we get the energy relation: for a given n, the energy ϵGn is

ϵGn (ϵn;α1, β) = −α
2
1

4

(
2β ϵn − 1

α1

√
β + n + 2

)2

+ β ϵ2n .

The denominator of the fraction, α1

√
β + n + 2, is always positive.

As in the ordinary case (without a GUP, β = 0), we will now look for explicit
solutions for the ground state and the first excited state.
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(x − xi ), n ∈ N,

where xi are distinct roots to be determined.

After some calculations we get the energy relation: for a given n, the energy ϵGn is

ϵGn (ϵn;α1, β) = −α
2
1

4

(
2β ϵn − 1

α1

√
β + n + 2

)2

+ β ϵ2n .

The denominator of the fraction, α1

√
β + n + 2, is always positive.

As in the ordinary case (without a GUP, β = 0), we will now look for explicit
solutions for the ground state and the first excited state.
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2.– Quantum Correction to the Coulomb Potential in GUP

Ground state and the associated wave function

For n = 0, the energy of ground state, ϵG0 , is determined in closed form:

ϵG0 (ϵ0;α1, β) = −α
2
1

4

(
2β ϵ0 − 1

α1

√
β + 2

)2

+ β ϵ20 .

The explicit form of the associated wave function is given by

ψG
0 (x) = C0 x2+α1

√
β exp

[
−x

√
β ϵ20 − ϵG0 −

√
β

2

(
2α2

4

3x3
+
α3

x2
+

2α2

x

)]
,

where C0 is the normalization constant and the parameters of the potential satisfy
some constraints.
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2.– Quantum Correction to the Coulomb Potential in GUP

First excited state and the associated wave function

For n = 1, the first excited state energy, ϵG1 , is given by

ϵG1 (ϵ1;α1, β) = −α
2
1

4

(
2β ϵ1 − 1

α1

√
β + 3

)2

+ β ϵ21 .

The wave function is explicitly given by

ψG
1 (x) = C1 (x − x1) x

2+α1
√
β exp

[
−x

√
β ϵ21 − ϵG1 −

√
β

2

(
2α2

4

3x3
+
α3

x2
+

2α2

x

)]
,

where C1 is the normalization constant and the parameters of the potential satisfy
some constraints.
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3.– Dirac eqn. with generalized gravitational interaction

In the last part of the talk, the Dirac equation is considered with the recently
proposed generalized gravitational interaction (Kepler or Coulomb), which includes
post-Newtonian (relativistic) and quantum corrections to the classical potential.

The general idea in choosing the metric is that the spacetime contributions are
contained in an external potential or in an electromagnetic potential which can be
considered as a good basis for future studies on space quantum communication.

We also discuss several known generalizations of the Coulomb potential within
this formulation in terms of certain Heun functions.

Roadmap:

(A) A review of the essential formulae of the Dirac equation in the desired metric.

(B) Using the Bethe-ansatz approach, we report the general solution for arbitrary
n, in particular solutions for the ground and the first excited states.
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3.– Dirac eqn. with generalized gravitational interaction

(A) Curved spacetime Dirac equation with a generalized metric

The Dirac equation (iγµ∇µ −mc)Ψ = 0 will be considered for the metric

gµν = diag
(
e2f (r),−e2g(r),−r2,−r2 sin2 θ

)
,

where f (r) and g(r) are arbitrary functions of the radial coordinate, being the
angular parts the same as in (3+1)–Minkowski spacetime.

In curved spacetime ∇µ = ∂µ + iAµ/c +Ωµ, with ∂µ the covariant derivative on
flat spacetime and Ωµ the spin connection. Choosing Aµ = (V (r), cAr (r), 0, 0),
the spinor wave function is

Ψc(r , θ, ϕ) = N

 R1(r) Y |m| j
j+1/2(θ, ϕ)

iR2(r) Y |m| j
j−1/2(θ, ϕ)

 .

Y j=l±1/2m
l (θ, ϕ) =

1√
2l + 1

 ±
√
l ±m + 1

2 Y
m−1/2
l (θ, ϕ)√

l ∓m + 1
2 Y

m+1/2
l (θ, ϕ)


are the spinor spherical harmonics, being Ym

l (θ, ϕ) the usual spherical harmonics.
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3.– Dirac eqn. with generalized gravitational interaction

We manipulate Dirac equation (iγµ∇µ −mc)Ψ = 0 with the assumptions:

• m = ℏ = 1, c = 1/α, with α being the fine structure constant.

• f (r) = g(r), with ef (r) = 1 + α2U(r),

• V (r) = a z(r) and U(r) = b z(r),

• R1(r) =
u(r)
r e−f (r)/2 and R2(r) =

v(r)
r e−f (r)/2,

•
(
ρ1(r)
ρ2(r)

)
= U′

(
u(r)
v(r)

)
, U′ = exp(iησ2),

• Ar (r) =
αC
S

[
V (r)
C − U(r)

]
− λ

r

[
1 + α2U(r)

]
, C = cos 2η,S = sin 2η,

and we obtain the final equation for the component ρ1(r)[
d2

dr2
+
α

S
(aC − b)z ′(r)− 2(b + ϵa)z(r)− α2

S2
(aC − b)2z2(r) +

ϵ2 − 1

α2

]
ρ1(r) = 0
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3.– Dirac eqn. with generalized gravitational interaction

(B) Solutions by the Bethe-ansatz approach
Let us consider the potential z(r) as in the previous Schrödinger-like equation

z(r) =
u

r
+

v

r2
+

w

r3
, u, v ,w < 0,

that has been investigated before in the GUP framework. Substituting into the
previous Schrödinger-like equation,

[
d2

dr2
+

ϵ2n − 1

α2
−

2u(aϵn + b)

r
+

1

S2

(
Λ2

r2
+

Λ3

r3
+

Λ4

r4

)
−

α2(b − aC)2

S2

(
w2

r6
+

2vw

r5

)]
ρ1,n(r) = 0,

where Λ2, Λ3 and Λ4 are some functions of u, v ,w , a, b, α, S ,C , ϵn. We have
added the index n to ϵ and ρ1(r) to distinguish some states from others.

Now, we propose

ρ1,n(r) = e∆(r) R1,n(r), ∆(r) = δ ln r +
γ

r2
+
β

r
+ λr ,

where R1,n(r) is a polynomial, and λ , β , γ < 0, δ > 0 are parameters to be find.
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[
d2

dr2
+

ϵ2n − 1

α2
−

2u(aϵn + b)

r
+

1

S2

(
Λ2

r2
+

Λ3

r3
+

Λ4

r4

)
−

α2(b − aC)2

S2

(
w2

r6
+

2vw

r5

)]
ρ1,n(r) = 0,

where Λ2, Λ3 and Λ4 are some functions of u, v ,w , a, b, α, S ,C , ϵn. We have
added the index n to ϵ and ρ1(r) to distinguish some states from others.

Now, we propose

ρ1,n(r) = e∆(r) R1,n(r), ∆(r) = δ ln r +
γ

r2
+
β

r
+ λr ,

where R1,n(r) is a polynomial, and λ , β , γ < 0, δ > 0 are parameters to be find.
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3.– Dirac eqn. with generalized gravitational interaction

Consequently, the differential equation for R1,n(r) simplifies to{
r3

d2

dr2
+

(
2λr3 + 2δr2 − 2βr − 4γ

) d

dr
+

(
ξ2 r

2 +
ξ1
S2

r +
ξ0
S2

)}
R1,n(r) = 0,

where ξ0, ξ1, ξ2 are known functions of u, v ,w , a, b, α, S ,C , ϵn.

To solve this equation, we assume R1,n(r) to be a polynomial of the form

R1,n(r) =

{
1, n = 0,∏n

i=1(r − ri ), n ∈ N,

where ri are distinct roots to be determined. The general solutions are given by

ξ2 + 2nλ = 0,

ξ1 + 2λ
n∑

i=1

ri + n(n − 1) + 2nδ = 0,

ξ0 + 2λ
n∑

i=1

r 2i + 2(δ + n − 1)
n∑

i=1

ri − 2nβ = 0,

the ri given by the Bethe ansatz eqns
n∑

j=1, j ̸=i

1

ri − rj
+

λ r 3i + δ r 2i − β ri − 2γ

r 3i
= 0.
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3.– Dirac eqn. with generalized gravitational interaction

Ground state and the associated wave function

For n = 0 it follows that the ground state energy ϵ0 is given by

ϵ0 =
−4aα2A2bu2 ±

√
4α2A2u2(a2 − b2)(B − 3A)2 + (B − 3A)4

4a2α2A2u2 + (B − 3A)2
,

with

A :=
√
α2S2(b − aC )2, B := α(b − aC ) (2αu(b − aC )− 3S) .

The associated wave function is ρ1,0(r) ∝ e∆(r), with

∆(r) =

(
3

2
+

αw(b − aC)(2αu(b − aC)− 3S)

2σS2

)
ln r − σ

r 2

(
rv

w
+

1

2

)
−

√
1− ϵ20
α2

r ,

The potential parameters v and w are given in terms of u, a, b,C ,S , α, ϵ0.
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3.– Dirac eqn. with generalized gravitational interaction

First excited state and the associated wave function

For n = 1, the first excited-state energy, ϵ1, is given by

ϵ1 =
−4aα2A2bu2 ±

√
4α2A2u2(a2 − b2)(B − 5A)2 + (B − 5A)4

4a2α2A2u2 + (B − 5A)2
.

The associated wave function is ρ1,1(r) ∝ (r − r1) e
∆(r), with

∆(r) =

(
3

2
+

αw(b − aC)(2αu(b − aC)− 3S)

2σS2

)
ln r − σ

r 2

(
rv

w
+

1

2

)
−

√
1− ϵ21
α2

r ,

The potential parameters v and w are given in terms of the Coulombic coefficient
u and a, b,C ,S , α, ϵ0.

The special case of the Coulomb interaction v = w = 0 can be obtained and
compared the existing literature.
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