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The present talk deals with the operator H;(q), for t = 0,1, generated in
L»[0, 7] by the differential expression

—y"(x) + a(x)y(x) (1)
and the boundary conditions
y(m) = ey (0),  y'(m) = e"y(0), (2)
where g is a real potential of the form

a ifxe|0,c],
q(x) = . (3)
b if x € (¢, m],

q(x+ 1) = q(x), and ¢ € (0, 7t). Without loss of generality, we assume

that a < b, and .

Therefore, we have
ac+b(mr—c) =0, a<0<b, (4)
and (b—a)c = brt.
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The Kronig-Penney model is a simplified model of the electron in a
one-dimensional periodic potential and has been studied in many works
(see, for example, [1, Kronig, R.D.L., Penney, W.G.: Quantum mechanics
in cristal lattices. Proc. R. Soc. 130, 499-513 (1931)], [2, Chap.3, Brown,
B.M., Eastham, M.S.P., Schmidt, K.M.: Periodic differential operators,
Operator Theory: Advances and Applications. 230, Birkhuser/Springer:
Basel AG, Basel (2013)], [3, Chap.21, E. C. Titchmarsh, Eigenfunction
Expansion (Part II). Oxford University Press, London (1958)], [4, Veliev, O.
(2024), From One-Dimensional to Multidimensional. In: Multidimensional
Periodic Schrédinger Operator. Springer Tracts in Modern Physics, vol
291. Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4 2], [5,
O. A. Veliev, On Exact Estimates of Instability Zones of the Hill's
Equation with Locally Integrable Potential, arxiv.org/abs/2311.11568v2,
2023] and references therein).
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In the case of the Kronig-Penney model, the potential g(x) has the form

a ifxe|0,cl,
q(x) = ‘ (5)
b if x € (¢, d],

and g(x + d) = g(x), where ¢ € (0,d). In the present work, without loss
of generality, we assume that d = 7. Veliev [4, 5, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrodinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4 2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill's Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023]

studied the bands and gaps in the spectrum of the Schrédinger operator,
generated in L,[0, 1] by the differential expression (1) with potential (5),
for d = 1, and obtained asymptotic formulas for the length of the gaps in
the spectrum.
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The eigenvalues of Hy(q) and H;(q) are called the periodic and
antiperiodic eigenvalues of the Hill operator H(q), generated in L3[0, 7t| by
the differential expression (1) with potential (3), and they are denoted by
An,j and p, ;, respectively, for n € Z*%,j=1,2 where ZT is the set of
positive integers. The first periodic eigenvalue is denoted by Ay and
without loss of generality, it is assumed that A, ;1 < A, 2 and Hp1 < Mo
for n € Z*. It is known that (see [6, M. S. P. Eastham, The Spectral
Theory of Periodic Differential Equations.Scottish Academic Press,
Edinburgh, UK (1973)]),

the spectrum of the Schrédinger operator H(q) consists of the real
intervals

Ii=[Ao iyl Toi=[pyo Aal Tai=[Ao,pips] o

The bands T', Ty, ... of the spectrum o (H(q)) of H(q) are separated by
the gaps

Ay = (P‘l,lv P‘l,z)v D= (A1, A2), Azi= (V2,11V2,2)v e
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For this reason, the investigation of the periodic and antiperiodic
eigenvalues is of great importance. In [4, 5, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrédinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4 2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill's Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023],

Veliev investigated the asymptotic behavior of large periodic and
antiperiodic eigenvalues to obtain asymptotic formulas for the length of
the gaps in the spectrum.
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In this work, we provide estimates for small periodic and antiperiodic
eigenvalues of the Schrédinger operator H(g). We obtain some useful
equations for calculating the periodic and antiperiodic eigenvalues using
Rouche's theorem. These equations are derived from some iterations
formulas by the methods used in [7, 8, N. Dernek, O. A. Veliev, On the
Riesz basisness of the root functions of the non-selfadjoint Sturm-Liouville
operator. Isr. J. Math. 145, 113-123 (2005); Shkalikov, A.A., Veliev,
A.A.: On the Riesz basis property of the eigen- and associated functions of
periodic and antiperiodic Sturm-Liouville Problems. Math. Notes 85(5),
647-660 (2009)].
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It is important to note that in [7, 8, N. Dernek, O. A. Veliev, On the Riesz
basisness of the root functions of the non-selfadjoint Sturm-Liouville
operator. Isr. J. Math. 145, 113-123 (2005); Shkalikov, A.A., Veliev,

A A.: On the Riesz basis property of the eigen- and associated functions of
periodic and antiperiodic Sturm-Liouville Problems. Math. Notes 85(5),
647-660 (2009)],

the authors used asymptotic formulas for large eigenvalues, which cannot
be used for small eigenvalues. In our work, we consider small eigenvalues
by numerical methods. We also note that, it is not easy to find conditions
on the potential for which the small eigenvalues satisfy the equations
derived from the iterations formulas, the calculations are very long and
technical.
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We shall focus on the periodic eigenvalues. The investigation of the
antiperiodic eigenvalues is similar. To give estimates for small periodic
eigenvalues, first, we prove (see Theorem 3) that the periodic eigenvalue
Apj is either the root of the equation

A= (2”)2 + i Akn(A) + ei2nc <q2n + i Bk,n(/\))v (6)
k=1 k=1

or the root of the equation
A=(2n)°+ Y Axn(A) — e <q2,, +) Bk,n(A)>, (7)
k=1 k=1

4(2n—1
in the set D, := [(2n)2 — M,, (2n)? + M,], if M, < 4@2n—1)

n=1,2,..., where M, = max{|al, b},
2kry = = T

, for

gk = (q, e q(x)e~"?*dx and the infinite series Ay , and By,

are defined in (13).
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We also prove (see Theorem 4) that the first periodic eigenvalue Ag
satisfies the equation

A=Y Acol(M), (8)
k=1

if Mo = max{|al|, b} <4/3. Then, to use numerical methods we take
finite sums instead of the infinite series in the equations obtained. To
approximate the roots of the equations (6), (7), and (8), we use the fixed
point iteration. It can also be used the Newton-Raphson method but in
this case it is necessary to compute the derivatives of the functions
Knj(A) and Ky(A) defined by (20) and (21). Then, using the Banach
fixed point theorem, we prove that each of these equations containing the
finite sums has a unique solution in the appropriate set

D, = [(2n)? — M, (2n)?> + M,], (see Theorem 5 and Theorem 6).
Moreover, we give error analysis (see Theorem 7 and Theorem 8) and
present a numerical example.
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Now, we state some preliminary facts. It is well known that the spectra of
the operators Hy(q) and Hi(q) are discrete and for large enough n, there
are two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues
(counting multiplicities) in the neighborhood of n?. See the basic and
detailed classical results in [2, 9, 10, 11, Brown, B.M., Eastham, M.S.P,,
Schmidt, K.M.: Periodic differential operators, Operator Theory:
Advances and Applications. 230, Birkhuser/Springer: Basel AG, Basel
(2013); Levy, M., Keller, B.: Instability intervals of Hill's equation. Comm.
on Pure and Appl. Math. 16, 469-476 (1963); Magnus, W., Winkler, S.:
Hill's Equation. Interscience Publishers, New York (1966); Marchenko, V.:
Sturm-Liouville Operators and Applications. Basel, Birkhauser Verlag
(1986)] and references therein.

The eigenvalues of the operators Hy(0) and H;(0) are (2n)? and
(2n+1)2, for n € Z, respectively and all the eigenvalues of Hy(0) and

H; (0), except 0, are double.
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It is also known that [12, J. Péschel and E. Trubowitz, Inverse Spectral
Theory (Academic Press: Boston,Mass, USA, 1987)]

[Anj = (2n)%| < M,,
for n > 1, where M, = max{|al, b}. Therefore, we have
(2n)2 = M, < A, < (2n)% + M,

for n > 1. Here, we choose the number M, depending on the index n.

Besides,
Ao < My,

where My = max{|a|, b} and we assume My < 4/3.
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If k £ +n, then

[Anj— (2k)?| > [(2n)* — (2k)*| — M, = 4|n — k||n+ k| — M,
24(2”_1)_ n (9)

4(2n—1)

3 . If n=1, we have

for n > 1 and under the assumption M, <
|/\1,j| <4+ M; and

ALy — (2k)2] > [|An,] — (2K)3] > 16 — [Ayy| > 12— My,
for |k| > 2. Besides, if n > 2, we have |A, | > |Ayj| > 16 — M, and
[Anj = (2k = 1)%] = [[A2,i] = (2K)?| = [A2,] —4 > 12— My,

for k # +n.
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The analogous inequalities can be written for the antiperiodic eigenvalues,
from the inequalities

(2n—1)2—m, < Hoi < (2n—1)? + m,,
for n > 2. If k # +n, then

[t — (2k = 1)°| = [(2n = 1)* = (2k = 1)| — m,
=4|n—k|ln+ k —1] —m, > 4(2n—2) — m,, (10)

8(n—1)
3

for n > 2, under the assumption m, < . Ifn=1, we have

]yl,j\ <1+ m; and
|7/‘1,j_ (2k—1)%| > ||P‘1,j’ —(2k=1)%]>9— |.”1,j| > 8—my,

for |k| > 2, and we assume m; < 8/3.
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To obtain iteration formulas, we use the equations

(Anj— (2n)*) (¥, €°™) = (q¥n,, ™), (11)
(Anj— (2n)*) (¥ e ™) = (q¥n,j e ™) (12)

which are obtained from

N (X) +a(x)¥n,j(x) = A, Fn,(x),

i2nx —i2nx

by multiplying both sides of the equality by e and e , respectively,
where ¥y j(x) is an eigenfunction corresponding to the eigenvalue Ay ;.
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Iterating equation (11) m times for N = n, the way it was done in the
paper [7, N. Dernek, O. A. Veliev, On the Riesz basisness of the root
functions of the non-selfadjoint Sturm-Liouville operator. Isr. J. Math.
(2005)], we obtain

(A ki enl ) ¥, ), e2)
ILH

<Cl2n ) ¥nj e ™) = Rmn(Anj).  (13)
where
S e Vi e IR P e T merrmyy ok
Bln(t) = Zk (A= (2(n —qm;’)Q] - [qugz(r; v n))?]’
€20 nn)x
e R
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S
Here, the sums are taken under the conditions ny = £1, }_ n; # 0, 2n, for
j=1
s=12,..,m+1
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Similarly, iterating equation (12) m times, we obtain
m .
(g = (20 = 3 4500hns) ) (¥ 727)
k=1
m

- (q 3 Bz,nmn.») (¥,),€2™) = Rho(Any), (1)

where
* An19ny " qnQ—ny—np—--—ny
) = |
W= Y R D@t tF Y]
. qn19ny " " qn9—2n—ny—noy—--—ny
B A) = v
M= L A m)] = @t
0 G - Gn On v, —i2(n+n1+-+nmy1)x
RN = Y Ion Gy~ = G D1 (G ¥ 0o € )

A= @+ )+ = 2+ + -+ ) )

ny,ng,..., Nm+1

S
Here, the sums are taken under the conditions ns = &1, )_ n; #0,—2n,
j=1
fors=1,2,....m+1.
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We note that, the iteration formulas (13) and (14) were used in [7, N.
Dernek, O. A. Veliev, On the Riesz basisness of the root functions of the
non-selfadjoint Sturm-Liouville operator. Isr. J. Math. 145, 113-123
(2005)]

for large eigenvalues to obtain asymptotic formulas. In this work, we find
conditions on potential (3) for which the iteration formulas (13) and (14)
are also valid for the small eigenvalues, as m tends to infinity. We also
note that, it is not easy to give such conditions, there are many technical
calculations. Since the potential g is of the form (3), we have the
followings, after some calculations:

a—b —i2kc i2ke
qk = i27rk( —e %k ), Q—k=e2k k. \Q—k|:\q/<\v
pn(A) =An(A), Bi,(A) = €Bi (M),

fork=1,2,....
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In order to give the main results, we state the following lemmas. Without
loss of generality, we assume that ¥, j(x) is a normalized eigenfunction
corresponding to the eigenvalue A, ;. First, we consider the case n > 1.

4(2n—1
If M, < M forn=1,2,..., where M, = max{|a|, b}, then the
statements
(a) limpm—co Rm.n(A) =0, limy oo Ry, 1(A) =0,

(b) |un;l? + |Vn,j|2 > 0, where u,; = (¥, €?™) and
Vpj = (\Ijn,jy e—I2I7X)
are valid.

Now, we consider the case n = 0.

If My = max{|a|, b} < 4/3, then the statements
are valid.
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Before stating the main results, we introduce the following notations and
relations which were used in the works [4, 5, 8, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrédinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4 2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill's Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023; Shkalikov,
A.A., Veliev, A.A.: On the Riesz basis property of the eigen- and
associated functions of periodic and antiperiodic Sturm-Liouville Problems.
Math. Notes 85(5), 647-660 (2009)]

to obtain subtle asymptotic formulas for large eigenvalues and the length
of the gaps in the spectrum:

Q0 = ["altydt, 500 = Q(x)

Obviously,

and
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By (3), we have

ax if x €10, ¢,
ol
bx — bt if x € (c, 7]

and

(bx — br)? if x € (c, 7.

{a2x2 if x € [0, c],
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The Fourier coefficients of Q(x) and S(x) are

Qu = (Q, &%) = 1/7T Q(x)e 2R dx — 9k _
0

T i2k

and

1

T .
= / S(x)e 2% dx

Sk — (5,€i2kx) — ~
0

b—a
477k2

(1 o e—i2kc)

. 1 7 .
- f/ X it~ [ (bx - brr)e

b2)( —i2kec __ 1) (32 o b2)ce—i2kc b2e—i2kc

i4mk3 27rk?
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In particular,

1 b _ac _ (b—a)(1—e )
Q= [ QW= Ze-m =T Q="
and
52n _ (82 _ b2)(e—i4nc _ 1) N (32 _ b2)ce—i4nc b2e—i4nc-

i327Tn3 87rn? 8n?
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Using the Fourier decomposition Q(x) = Y3 ., Qxe’?® of Q(x) and the
integration by parts, we obtain

. Ak Q2n—k 1 & grGon—«k
B n 2 2 = — - Y9k92n—k
1,n((2n)%) k;oo (2n)2 — (2(n — k))? 4 k;oo k(2n— k)
k#0,2n K20.2m
2
[ee] 1 . o . .
= — Z Qi @Qop—k =2Qu Q> — 7/ < Z lel2kx> o i4nx gy
k=—oc0 7T Jo e
k#0,2n

1 /7 .
=2Qo Q2 — %/0 Q% (x)e ™™ dx = 2Qu Qo — Son.
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Now we introduce the integral (see [4, 5, 8, Veliev, O. (2024), From
One-Dimensional to Multidimensional. In: Multidimensional Periodic
Schrodinger Operator. Springer Tracts in Modern Physics, vol 291.
Springer, Cham. https://doi.org/10.1007/978-3-031-49035-4 2; O. A.
Veliev, On Exact Estimates of Instability Zones of the Hill's Equation with
Locally Integrable Potential, arxiv.org/abs/2311.11568v2, 2023; Shkalikov,
A.A., Veliev, AA.: On the Riesz basis property of the eigen- and
associated functions of periodic and antiperiodic Sturm-Liouville Problems.
Math. Notes 85(5), 647-660 (2009)])

/= /O”(P(X, n) — Po(n))2e 8™ d,

where

P(x,n) = / q(t)e*™dt — q_o,x.
0
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It is obvious that

P(0,n) = P(rmt,n) =0, P'(x,n) = q(x)e"*™ — q_s,,

and
4 i4n )
(e —1) — g anx if x € [0, c],
i4n
P(X, n) = b .
i4n (el4nx —1)—qg_onx — g_2nt if x € (¢, 7.
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The Fourier coefficients of P(x, n) are

L e i2kx L /r
Py(n) = 7/ P(x,n)e dx,  Py(n) = 7/ P(x, n)dx.
7T Jo T Jo
The integration by parts gives
— 2@n+k)xy 9k
Ponik(n) = (P(x,n), e ) P(n £ )

for the Fourier coefficients Py,1x(n) of P(x, n), for 2n+ k # 0. Using the
Fourier decomposition

i2(2n+k)x

o qke’
P — Py(n) = AL
k#0,—2n

of P(x,n) — Py(n) in the integral /,
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we obtain

o 2
A1n((2n)?) = k:Z_:oo (2n) |?§én— k))?
k#0,2n

L gkl l9-4/?
-k (<2n>2 — @K @7 @+ k>>2>

k
k#2n
e 2 1
Iy |ax] 1,
2 :21 (2n—k)(2n+ k) T
Py(n) can be calculated as
1 T (b_a)(ei4nc_1) T
Po(n) = P _ (T
o(n) ﬂ/o (x, n)dx T +qs (2 )
_(b—a)(e™—1) a(ec 1)
B 167Tn2 ian
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Now, the integration by parts in the integral /, gives

1 T j —i8nx
| = — / (P(x,n)— Po(n))(q(x)e’4”x —q-on)e 8nx dx
i4n Jo
1 q-2n 7tq2nPo(n)
=—h————h— - ,
14n 14n i4n
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By direct calculations, we obtain

Ve —idnc
_ _itnx ;. (b—a)(a+b+qgoon)(e”*°—1) abm
L= /0 P(x, n)q(x)e ™ dx = N o
b—a)(1— e '4n°)

32n2

T . <
h = / P(x,n)e 8™ dx =
0

and

| abmt (a® — b?)sin(4nc) (b —a)?(1 — cos(4nc))

~ 16m 64n° 64n"
n (b— a)%(1 — cos(4nc))
287nt '
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Therefore, we have

ab  (a® — b?)sin(4nc)

— ALn((2n)?) = %/ = Tem " 647Tn3
(a1 sline) (b= enline)
and
€™ (gan + B1,n((2n)?)) = €™ (q2n +2Q0Q2n — S2n)
_ (a—b)sin(2nc) N abcos(2nc) N (a2 — b?) sin(2nc). (16)

27tn 8n? 167tn3
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Letting m tend to infinity in the equations (13) and (14), we obtain the
following main results. First, we consider the case n > 1:

Theorem

S
|
—_

4(2
(a) IfM, < (3> forn=1,2,..., where M, = max{|a|, b}, then

Anj is an eigenvalue of Hy(q) if and only if it is either the root of the
equation

2/7)2 Z Ak ,, — ei2nc <q2n + Z Bk,n()\)> =0 (17)
k=1
or the root of
(2 - z Aen(A) + €20 <Q2n 'y Bk,,,m)) —0 (1)
k=1

in the set D, := [(2n)? — M, (2n)? + M,]. Moreover, the roots of (17)
and (18) in D,, coincide with the (2n)th and (2n+ 1)st periodic
eigenvalues A1 and Ap 2 of Hy.
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Now, we consider the case n = 0:

Theorem

If My = max{|al, b} < 4/3, then the first periodic eigenvalue Ay is the
root of the equation

A=Y Awo(A) =0, (19)
k=1
in the set Dy = [—My, My]. Moreover, (19) has exactly one root (counting

multiplicity) in the set Dy and this root coincides with the first eigenvalue
)Lo of Ho.
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We can use numerical methods by taking finite sums instead of the infinite
series in (17), (18) and (19), and obtain

ZAskn —1y '2"C<qz +ZBskn/\))=0,

forj=1and j =2, and

A — Z As,k,O(/\) -
k=1

respectively, where

A k (/\) = XS: qniGny " An,9—ny—no—---—ny
- ny,ng,...,Ng=-—=s [A_(2(’7_”1))2]"'[A—(Z(n—nl—..._nk))2
S
qnlqn2 e anq2nfn1—n27.‘.,nk
Bskn(A) =
s ( ) n1,"2r-;”<:—5 [A—(2(n—n1))2]..-[)\—(2(n—n1_..._nk))Z
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Define the functions

Knj(A) i= A = (2n)* — gnj(A) (20)
and
Ko(A) := A — go(A), (21)
where
gnj Z As k, n - )J i2ne <q2 + Z Bs k,n )\)> (22)
and .
A) =Y AskolA). (23)
k=1
Then,
A= (2n)+ gn; (M), (24)

forj=1and j=2,and n > 1.
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Now we state another main result.
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Theorem

4(2n—1
Suppose that M, < w forn=1,2,..., where M, = max{|a|, b}.

Then for all x and y from the interval D, = [(2n)? — M,,, (2n)% + M,],
the relations

|&nj(x) — &ni(¥)| < Gulx = yl, (25)
4(b— a)? 4

G = @ —1) = My)[m@@n—1) =My — (b=2)] = 77 —1)

<1

hold for j = 1,2, and equation (24) has a unique solution p,, . in Dy, for
each j. Moreover

6(b— a)?
[Anj = Pn ! < m(s+1)%2[4(s+1)[s+1—2n — M,|(1-GC,)
3(b— a)r+2
" o (8(2n — 1) — My) (420 — 1) — My) — (b= )] 1 - ;)

(26)
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We give an analogous theorem to Theorem 5 for the case n = 0.
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Theorem

Suppose that My < 4/3, where My = max{|a|, b}. Then for all x and y
from the interval Dy = [—My, My] the relations

lgo(x) —&o(y)] < Golx =y,

B 3(b— a)? 3
Q= =M =My = (b=2)] = m(r—1)

hold and the equation
A= go(/\)

r
has a unique solution p, in Dy, for each j, where go(A) = Y Asko(A).
k=1

Moreover
3(b— a)?
A0 = pol < (s +1)?2[4(s+1)> — Mp](1 — Go)
. 9(b— a)r+2
16711 (4 — Mo) (2 — Mo)[7t(4 — Mo) — (b — a)](1 — Co)’

(27)
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Let us approximate On, . by the fixed point iterations:

Xn,i+1 = (2’7)2 +gn,1(Xn,i)v (28)
and
Yiit1 = (2n) + gn2(¥ni), (29)
where
gnj ZAskn - )J l2nc<q2 +ZBskn/\>)
forj=1,2.
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Now we state the following result.
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Theorem

4(2
If M, < (3) forn=1,2,..., where M, = max{|a|, b}, then the

following estimations hold for the sequences {x, ;} and {yn;} defined
by (28) and (29):

; (b—a) 3(b—a
!Xn,i—Pn,1|<(Cn)< ( Cn)+ n[4rr(2n—1) — (b— a)] (l—Cn>

(30)

S
|
—

; (b—a) 3(b—a
yni = Paal < (Co) <27rn(1 =G T anpan(en—1) = (b—a)(i= C,,)>
(31)

fori =1,2,3,..., where

4(b— a)? 4

Co = @ —1) = My)[m(@@n—1) = My) = (b=2)] = 7(m=1)

<1
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An analogous theorem to Theorem 7 can be stated for the case n = 0.

Theorem

If My < 4/3, where My = max{|a|, b}, then the following estimation
holds for the sequence {xy ;} defined by xo,; = go(xo,;), where

g(A) = ¥ Asso(d):
k=1

; b—a
boi =pol = (Q) 5 = A= G

where

B 3(b— a)2 3
G = MR = M) = (b=a)] = Al —1) -

is defined in Theorem 6.

(Yalova University)



Thus by (26), (27), (30)-(32), we have the approximations xg i, Xp,;, and
yni for Ag, Ap1, and A, o, respectively, with the errors

3(b—a)?
Ao =0l < 72 (s + 1)2[4(s + 1)2 — M) (1 — G)
n 9(b—a)+?
16707+ (4 — Mo)™1(2 — Mo) [7t(4 — Mg) — (b— a)](1 — Gp)
- b—a
+(GQ)’

2rt2mr— (b—a)](1— Gy)'

6(b— a)?
[Ant = Xn,i < m2(s+1)2[4(s + 1)[s + 1 —2n[ — M,](1 — C)
3(b_a)r+2
T2 (@20 — 1) — My) (420 — 1) — My) — (b— )](1 - C,)

i (b—a) 3(b— a)>
+(Ca) <27rn(1 ) + 2rt[4rt(2n—1) — (b—a)](1 — Cn))'

(Yalova University)



and

Ans— yoil < 6(b— a)?
[An2 = Y 72(s+ 1)2[4(s + 1)|s + 1 — 2n| — M,](1— Cy)
3(b—a)t?
i (a(2n— 1) = My) (420 —1) = My) — (b—a)](1 = C»)

i(_(b—a) 3(b— a)?
+(Cn) <27rn(1 - GCy) + 2rt[4rt(2n—1) — (b—a)](1 — Cn))'

By these error formulas it is clear that the error gets smaller as r and s
grow.
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Now, we present a numerical example. From the numerical results, we
conclude that, we can impose the conditions My < 2 and M, < 2(2n—1),
forn=1,2,..., where M, = max{|a|, b}, for the periodic eigenvalues,

4 4(2n—1
instead of the conditions My < 3 and M, < L forn=1,2,...,

for some specific values of ¢ € (0, 7r). Similarly, we can impose the

conditions m; < 4 and m, < 4(n —1), for n=2,3,..., where
m, = max{|al, b}, for the antiperiodic eigenvalues, instead of the

8 8(n—1 )
conditions my; < 3 and m, < M for n=2,3, ..., for some specific

values of ¢ € (0, 7).
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Example

Fora= —1, b=1, and ¢ = 71/2, we have the following approximations
for the first periodic eigenvalues Ag, A1 1, A1 2 and antiperiodic eigenvalues
My 1. Hqyo- Inour calculations, we take r = s = 5.

Ao = —0.100720167503
A1 = 3.953707280198
A1 = 3.976804161836
i1 1 = 0.317530742073

i1 5 = 1.578063115969.

Usually it takes 8 — 10 iterations with the tolerance 1e — 18 by the fixed
point iteration method, even if we choose an initial value that is not too
close to the exact value, which means that convergence is quite fast.
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