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Summary

• We consider particles with position-dependent effective mass in double
heterostructures, subject to the action of different non-singular potentials whose
dynamics are governed by the Schrödinger equation.

• The study in this quantum regime allows us to develop a numerical method to
calculate the energy spectrum of these systems. When analytical results are
obtained, the numerical results are consistent with them.

• Once this first objective has been achieved, our interest focuses on the study of
particles whose dynamics are governed by the relativistic Dirac-Weyl type
equations with Fermi speed dependent on the position and the Dirac-type
equation with Fermi mass and velocity dependent on the position.
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Summary
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Position-dependent mass

The time-independent Schrödinger equation in one dimension is the equation that models
the dynamics of a particle of constant mass (m = M0) subject to an electric potential
(V (z)). (

Ĥ − E
)
ψ(z) =

(
T̂ + V (z)− E

)
ψ(z) = 0

where T̂ is the kinetic energy operator (KOE) and Ĥ is the total energy operator.

T̂ =
1

2M0
p̂2; Ĥ = T̂ + V (z).

p̂ = −iℏ d
dz , is the moment operator.

Thus, the Schrödinger equation is explicitly stated
as (

− ℏ2

2M0

d2

dz2
+ V (z)

)
ψ(z) = Eψ(z)
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Position-dependent mass

• When the mass depends on the position (m =M0m(z)), it becomes an operator
that no longer commutes with the momentum operator (p̂ = −iℏ d

dz ).

• In such a circumstance, it is not trivial to assign the correct order of the operators
(mass and momentum) that make up the kinetic energy operator (KEO).

The operator that covers all the different proposals is due to O. von Ross [11]

TvR(α, β) =
1

4
(mαp̂mβ p̂mγ +mγ p̂mβ p̂mα). (1)

where1

p̂ = −iℏ d
dz

;m =M0m(z), (M0 = cte). α+ β + γ = −1.

1For practicality, in the following we will adopt the units ℏ2(2M0)
−1 = 1
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Position-dependent mass

Then, the Schrödinger equation to solve is

(TvR(α, β) + V (z)− E)ψ = 0 (2)

which we can write explicitly as(
− d

dz

1

m(z)

d

dz
− 1

2

(
ν
m′′(z)

m2(z)
− ηm

′2(z)

m3(z)

)
+ V (z)− E

)
ψ = 0. (3)

where
ν = −1− β, η = −2(β + 1)(α+ 1)− 2α2.

In (3) we will make the variable changes ψ(z) = m(z)1/4ϕ, ρ =
∫ √

m(z)dz
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Position-dependent mass

When replacing

ψ(z) = m(z)1/4ϕ, ρ =

∫ √
m(z)dz, (4)

in (3), the function ϕ satisfies the Schrödinger equation with constant ‘mass’

Equation associated with (3)

−d
2ϕ

dρ2
+ (Ṽ (ρ)− E)ϕ = 0, (5)

Ṽ (ρ) = V (z) +
1

2

(
η +

7

8

)
m′(z)2

m(z)3
− 1

2

(
ν +

1

2

)
m′′(z)

m(z)2
. (6)

ν = −1 − β, η = −2(β + 1)(α + 1) − 2α2
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Position-dependent mass

Recapitulating the ideas of this first part, we have the Schrödinger equation with
position-dependent mass

(TvR(α, β) + V (z)− E)ψ = 0

and this equation can be written as a Schrödinger type equation with constant mass
and a effective potential Ṽ which depends on the parameters α and β, the mass profile
M and the potential V

−d
2ϕ

dρ2
+ (Ṽ (ρ)− E)ϕ = 0,

where

Ṽ (ρ) = V (z) +
1

2

(
η +

7

8

)
m′(z)2

m(z)3
− 1

2

(
ν +

1

2

)
m′′(z)

m(z)2
.

ν = −1− β, η = −2(β + 1)(α+ 1)− 2α2, ψ(z) = m(z)1/4ϕ, ρ =

∫ √
m(z)dz.
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Boundary conditions

Boundary conditions.
If there is an abrupt, finite change in potential and/or mass at point zj , then the mass
distribution mj (mj+1) and the wavefunction ψj (ψj+1) immediately to the left (right)
of zj must satisfy the pair of conditions depending on how we choose the values of α
and β.

If we choose the BenDaniel-Duke OEC (α = 0, β = −1) we have the conditions
[3, 1, 10, 9, 6]

ψj(zj) = ψj+1(zj),
1

mj

d

dz
(ψj(z))z=zj

=
1

mj+1

d

dz
(ψj+1(z))z=zj

. (7)

On the other hand, if we choose the Zhu-Kroemer OEC (α = −1/2, β = 0), the
pair of conditions is [3, 12, 5, 9, 4]

ψj(zj)√
mj

=
ψj+1(zj)√
mj+1

,
1
√
mj

d

dz
(ψj(z))z=zj

=
1

√
mj+1

d

dz
(ψj+1(z))z=zj

. (8)
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Double heterostructures
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Double heterostructure model

For the double heterostructure model we are going to assume that we have an
arrangement like the one in the figure. In this intermediate region, we have a type B
semiconductor and outside a type A semiconductor.

Graphic representation of a double heterostructure.

• In the intermediate region, a smooth dependence on the position of the effective
mass of a particle subject to a smooth potential also occurs; outside this region,
the behavior of both profiles is constant.
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Modelo de heteroestructura doble

V (z) =


V0

Vin(z)

V2

, m(z) =


m0 ; z < z0,

min(z) ; z0 ≤ z < z1,

m2 ; z1 ≤ z,
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In the intermediate region the particle obeys the equation (2)(
− d

dz

1

min(z)

d

dz
− 1

2

(
ν
m′′

in(z)

min(z)2
− ηm

′
in(z)

2

min(z)3

)
+ Vin(z)− E

)
ψin = 0, (10)

and in the other regions, behavior is governed by the equations(
− 1

m0,2

d2

dz2
+ V0,2 − E

)
ψ0,2(z) = 0. (11)
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Double heterostructures

V (z) =
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The complete solution, in the case of bound states, is written as

ψ0(z) = Oeη0z ; z < z0, (13)

ψin(z) = Pψ1
in(z) +Qψ2

in(z) ; z0 ≤ z < z1, (14)

ψ1(z) = Se−η2z ; z1 ≤ z. (15)

η0,2 =
√
m0,2(V0,2 − E) y O,P , Q, S They are normalization constants.
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Double heterostructures

To these solutions we apply the BenDaniel-Duke boundary conditions (α = 0, β =
−1)[3, 1, 10, 9, 6]

ψj(zj) = ψj+1(zj),
1

mj

d

dz
(ψj(z))z=zj

=
1

mj+1

d

dz
(ψj+1(z))z=zj

. (16)
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Double heterostructures

Using the condition BD-D at point z0 and z1, we obtain the following system of
equations

Oreη0z0 = Pψ1
in(z0) +Qψ2

in(z0) = −Pχ11 −Qχ12, (17)

Se−η2z1 = Pψ1
in(z1) +Qψ2

in(z1) = −Pχ21 −Qχ22, (18)

where

χ1i = −
m0

η0

(ψi
in(z))

′|z=z0

min(z0)
, χ2i =

m2

η2

(ψi
in(z))

′|z=z1

min(z1)
; i = 1, 2. (19)
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Double heterostructures

Thus, we have a homogeneous system of linear equations that can be written in matrix
form as

X

(
P
Q

)
=

(
ψ1
in(z0) + χ11 ψ2

in(z0) + χ12

ψ1
in(z1) + χ21 ψ2

in(z1) + χ22

)(
P
Q

)
= 0. (20)

For the non-trivial solution of (20) the determinant of X must be zero

|X| = 0. (21)

This is a transcendental equation that, as will be seen in the examples, allows us to
calculate the energies of the bound states, EBD-D.
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Double heterostructures

When the condition (general) Z-K [4] is applied to the solution (13-15) at points z0
and z1 , we arrive at the same system of equations for P and Q but with the changes

χji → χ̂ji ; j, i = 1, 2. (22)

where

χ̂1i = −
√
min(z0)

η0

(
ψi
in(z)√
min(z)

)′

z=z0

, χ̂2i =

√
min(z1)

η2

(
ψi
in(z)√
min(z)

)′

z=z1

; i = 1, 2.(23)

With these changes and the transcendental equation (21), we obtain the energy
spectrum EZ-K
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Método Multi-Step
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Multi-Step Method

We consider a potential and a position-dependent effective mass distribution given by

V (z) =



V0

V1

V2

.

Vj

.

Vn

, m(z) =



m0; z < z0,

m1; z0 ≤ z < z1,

m2; z1 ≤ z < z2,

.

mj ; zj−1 ≤ z < zj ,

.

mn; zn−1 ≤ z.

Vj,mj

5 10 15 20 25 30 35

1

2

3

4

5

6

These equations define the value of the potential Vj , the effective mass mj and the
solutions ψj in each j-th region (j = 0, 1, 2, . . . n) of one-dimensional space.
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Multi-Step Method

Regardless of the values of α and β the solutions in each interval will be

ψj(z) = Aje
ikjz +Bje

−ikjz; kj =
√
mj(E − Vj). (24)

These solutions must satisfy at points zj some of the conditions (16) u (8). From
the coefficients Aj and Bj we obtain reflection coefficient Rc through the reflection
amplitude R = B0

A0
. The reflection (transmission) coefficients Rc = |R|2 (Tc = |T |2),

satisfy Rc + Tc =1.
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Boundary conditions

If we apply the boundary conditions to the functions ψj at a point zj

ψj(z) = Aje
ikjz +Bje

−ikjz, ψj+1(z) = Aj+1e
ikj+1z +Bj+1e

−ikj+1z

then

Bj

Aj
=

rj,j+1 +
Bj+1

Aj+1
e−2ikj+1zj

1 + rj,j+1
Bj+1

Aj+1
e−2ikj+1zj

e2ikjzj , (25)

where

rj,j+1 =
kjµj − kj+1ρj
kjµj + kj+1ρj

. (26)
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R for a single interfaces (n = 1)

For a single interface, we have two functions

ψ0(z) = A0e
ik0z +B0e

−ik0z; ψ1(z) = A1e
ik1z +B1e

−ik1z

with B1 = 0 and z0 = 0, soBj

Aj
=

rj,j+1 +
Bj+1

Aj+1
e−2ikj+1zj

1 + rj,j+1
Bj+1

Aj+1
e−2ikj+1zj

e2ikjzj



R =
B0

A0
= r01 =

k0µ0 − k1ρ0
k0µ0 + k1ρ0

(27)
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R for two single interfaces (n = 2)

In this case, we have three functions

ψ0(z) = A0e
ik0z +B0e

−ik0z, ψ1(z) = A1e
ik1z +B1e

−ik1z, ψ2(z) = A2e
ik2z

(B2 = 0). Using equation (25) for the coefficients of the three functions, we have the
relationships

B0

A0
=

r01 +
B1
A1
e−2ik1z0

1 + r01
B1
A1
e−2ik1z0

e2ik0z0 ,
B1

A1
=

r12 +
B2
A2
e−2ik2z1

1 + r12
B2
A2
e−2ik2z1

e2ik1z1 = r12e
2ik1z1 . (28)

Thus, the reflection coefficient is

B0

A0
=

r01 + r12e
2ik1w1

1 + r01r12e2ik1w1
(29)

where we define w1 = z1 − z0 and z0 = 0.
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R for n interfaces

The recursive formula, using the condition BD-D, for the reflection amplitude of the
system described by Eq. (24) is 2

R = r012...n =
B0

A0
=

r01 + r12...ne
2ik1w1

1 + r01r12...ne2ik1w1
,

r12...n =
r12 + r23...ne

2ik2w2

1 + r12r23...ne2ik2w2
, (30)

...

rn−1,n =
k̂n−1 − k̂n
k̂n−1 + k̂n

,

where the quantities have been defined

wj = zj − zj−1, rlj =
k̂l − k̂j
k̂l + k̂j

; k̂j =
kj
mj

.

2The reflection (transmission) coefficients Rc = |R|2 (Tc = |T |2), satisfy Rc + Tc = 1.
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R para n interfaces

If the condition Z-K is considered, the recursive character of the formula (30) is
maintained but the quantity rn−1,n changes to

rn−1,n =
kn−1 − kn
kn−1 + kn

. (31)
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Discretization of smooth profiles

z

-1

1

2

3

4
f(z)

Figura: (a) Arbitrary smooth function f(z)

z

-1

1

2

3

4
f(z)

Figura: (b) Discrete representation of f(z)

Given an arbitrary smooth function f(t) of mass or potential (a) it can be discretized
through a succession of constant finite steps (b) given by Eq (24).

The poles of the coefficient Rc are approximations to the eigenvalues of the smooth
problem.
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Applications
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Symmetrical mass and potential distributions

We consider the symmetric model given by the following potential and mass distribution

V (z) =


V0

Vin(z) = − µ2

1+z2

V2

, m(z) =


m0 ; z < z0 < 0,

min(z) =
σ2

1+z2
; z0 ≤ z < z1,

m2 ; z1 ≤ z,

(32)

Graph shows the symmetric mass distribution and
potential well of equation (36) as functions of z;
σ = 4, µ = 3, z0 = −2. z1 = |z0| and µ, σ are arbi-
trary real parameters. We define Vin(z0) = V0 = V2

andmin(z0) = m0 = m2. Thus V (z) andm(z) are
continuous. V(z)

m(z)

-4 -2 0 2 4
z

-5

0

5

10

15
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Position-dependent mass

Remembering, when we replacing

ψ(z) = m(z)1/4ϕ, ρ =

∫ √
m(z)dz, (33)

in (3), the ϕ function satisfies the Schrödinger equation with ‘constant mass’

Equation associated with (3)

−d
2ϕ

dρ2
+ (Ṽ (ρ)− E)ϕ = 0, (34)

Ṽ (ρ) = V (z) +
1

2

(
η +

7

8

)
m′(z)2

m(z)3
− 1

2

(
ν +

1

2

)
m′′(z)

m(z)2
. (35)

ν = −1 − β, η = −2(β + 1)(α + 1) − 2α2
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Symmetrical mass and potential distributions

V (z) =


V0

Vin(z) = − µ2

1+z2

V2

, m(z) =


m0 ; z < z0 < 0,

min(z) =
σ2

1+z2
; z0 ≤ z < z1,

m2 ; z1 ≤ z,
(36)

(39) is the solution of the equation (modified Pöschl-Teller potential [2, 7])

d2ϕ

dρ2
+

(
κ2 +

λ(λ− 1)

σ2
1

cosh2 ρ
σ

)
ϕ = 0. (37)

By solving the equation in complete one-dimensional space, with the condition that its
solution vanishes at infinity, the energy spectrum (κ2 = E − 1/4+2η−3ν

σ2 ) is

En = −(λ− 1− n)2

σ2
+

1/4 + 2η − 3ν

σ2
; n = 0, 1, 2 . . . , λ− 1. (38)
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Symmetrical mass and potential distributions

The solution is

ψin(z) =

(
σ2

1 + z2

)1/4

(1 + z2)λ/2
{
P 2F1

(
a, b,

1

2
;−z2

)
+Qz2F1

(
a+

1

2
, b+

1

2
,
3

2
;−z2

)}
. (39)

with

a =
1

2
(λ+ iκσ), b =

1

2
(λ− iκσ).

where

κ2 = E − 1/4 + 2η − 3ν

σ2
, λ(λ− 1) = −(1/4 + 4ν − 2η − µ2σ2).
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Symmetrical mass and potential distributions

ψin(z) =

(
σ2

1 + z2

)1/4

(1 + z2)λ/2
{
P × 2F1

(
a, b,

1

2
;−z2

)
+Q× z2F1

(
a+

1

2
, b+

1

2
,
3

2
;−z2

)}
.
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Figura: Even wavefunctions for energies
E0 = −1.96428, E2 = −3.5013,
E4 = −5.6250 and E6 = 8.25.
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Figura: Odd wave functions for energies
E1 = −2.63724, E3 = −4.50009 and
E5 = −6.8750.
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Table A

Symmetrical well and mass

Heteroestructura doble (36) (σ = 4, µ = 3, z0 = −2)

Condición BD-D

E0 E1 E2 E3 E4 E5 E6

Ec. Transcendental , EBD-D -8.25 -6.875 -5.625 -4.50009 -3.5013 -2.63724 -1.96428
Polos de RBD-D

c -8.25 -6.875 -5.625 -4.50009 -3.5013 -2.63724 -1.96428
Ec. (38), En -8.25 -6.875 -5.625 -4.5 -3.5 -2.625 -1.875

Condición Z-K

Ec. Transcendental , EZ-K -8.3099 -6.9297 -5.6745 -4.54428 -3.53899 -2.66042 -1.94466
Polos de RZ-K

c -8.3099 -6.9297 -5.6745 -4.54428 -3.53899 -2.66042 -1.94466
Ec. (38), En -8.3099 -6.9297 -5.6745 -4.54430 -3.539103 -2.65890 -1.90370

Values of the energies of the bound states of the symmetric potential well with
symmetric position-dependent mass with parameters σ = 4, µ = 3, z0 = −2 using the

BD-D and Z-K conditions .
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Double asymmetric parabolic quantum well

Finally, a potential function and a position-dependent mass function are analyzed, both
modeled by a pair of asymmetric parabolic wells given by the equations

V (z) = V 0

{
1

f(z)

g(z)

1

, m(z) =

{
m0 ; z < b

m1 + (m0 − m1)f(z) ; b ≤ z < c,

m1 + (m0 − m1)g(z) ; c ≤ z < d,

m0 ; d ≤ z.

(40)

where

f(z) =
(z − (c+ a)/2)2

((c− a)/2)2
, g(z) =

(z − (d+ c)/2)2

((d− c)/2)2
.

Graph showing the asymmetric parabolic quantum
well as a function of z; V0 = 0.3 eV, a = 9.4 nm,
b = 11 nm, c = 25 nm, d = 31 nm, m1 = 0.0665me

and m0 = 0.0960me (me= rest electron mass)
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Table D

Double heterostructure (40)
(V0 = 0.3 eV, a = 9.4 nm, b = 11 nm, c = 25 nm,

d = 31 nm, m1 = 0.0665 me, and m0 = 0.0960 me; [En] = meV.)

E1 E2 E3 D%
Ref [8] 50.527710 117.369463 156.513093

0.009%
Poles of RBD-D

c 50.5284 117.34107 156.51738
Poles of RZ-K

c 54.1197 130.65338 160.38424
6.974%

Energy values (meV) for the first three bound states
with constant mass m∗ = m1 = 0.0665 me

Rc poles 44.3005 109.30502 134.58205

This example cannot be solved analytically (we couldn’t). The energies of the bound
states were obtained numerically in [8] using functions of the orthonormalized basis
of the infinite square potential, here we obtained them by the multi-step method and
compared them with those reported in [8].
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Double asymmetric parabolic quantum well

Observation: The emission frequency ω and
the gain of the laser are theoretically diffe-
rent depending on the initial choice of the
ambiguity parameters α and β of the kine-
tic energy operator and not due only to the
geometry of the system.

When using the BD-D condition, the difference between |E3−E2| = 39.17631 eV, with
the Z-K condition we have |E3 − E2| = 29.730844 eV, while the difference |E3 − E1|,
which is the excitation energy needed for the electron to change from the ground state
to the second excited state, essentially remains the same in both cases (105.98898 eV;
106.264524 eV)
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Conclusions

• The energy spectrum (number of bound states and energy values) is sensitive to
the mass profile used and in some cases the use of one boundary condition or
another significantly influences the energy value.

• The examples studied show that the average percentage difference between the
spectrum obtained using the BD-D condition and that obtained using the Z-K
condition increases when the rate of change in the mass profile tends to be large.

• The multi-step method can be used as a useful tool to solve the Schrödinger
equation.
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Conclusions

• Our methodology allows us to calculate the energy spectrum of double
heterostructures for any ambiguity condition, as well as for potentials and masses
that can be approximated by the equation (24).

• We have shown quantitatively that the gain of the semiconductor laser diodes
discussed in the reference [8] is strongly affected by the model ambiguity
hypothesis. This evidences the emergent, and not “first principles”, character of
the Schrödinger equation with position-dependent effective mass as discussed in
the introduction of the thesis.
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Thank you

Thank you!
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