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Onset of superconductivity in decreasing fields 

A superconductor subject to an external magnetic field ( of intensity 
 ) undergoes phase transitions. The presence of corners in the 

sample influences the phase transitions.

[Fomin et al., Europhys. Lett. 42, (1998)] and [Moshchalkov et al., Nature, 373 (1995) 319]




     


  

    


         

Breakdown of superconductivity for ; onset of superconductivity at the corner for 

; onset of superconductivity  along the surface for  


H

H > HC

Hcorner
C < H < HC H < Hcorner

C .



The Ginzburg—Landau order parameter 

The phenomenological Ginzburg—Landau model detects the state 
of  superconductivity via an order parameter, 


If  the sample is in a superconducting state locally at  

and  is a measure of the density of superconductivity.


If  the sample is in a normal state (not superconducting) 

locally at . In this case 


ψ : Ω → ℂ .

ψ(x) ≠ 0, x
|ψ(x) |2

ψ(x) = 0,
x |ψ(x) |2 = 0.



Effective model in a sector 

In 2007, Fournais and Bonnaillie-Noël introduced the following 
effective energy in the sector  :





where


— 


—  corresponds to the intensity 
of the  applied magnetic field


Sβ

ℰμ(ψ) = ∫Sβ
(| (∇ + iF)ψ |2 − μ |ψ |2 +

μ
2

|ψ |4 )dx

F(x1, x2) =
1
2

(−x2, x1)

μ > 0



An eigenvalue problem 

Consider            


where 


In terms of , the magnetic Laplacian on ,  is 

 and  where  


[Bonnaillie, Asympt. Anal., Vol. 41, 2005]


μ(β) = inf
ψ ∈ W1,2

F (Sβ)
ψ ≠ 0

∫
Sβ

| (∇ + iF)ψ |2 dx

∫
Sβ

|ψ |2 dx
,

W1,2
F (Sβ) = {ψ ∈ L2(Sβ) : (∇ + iF)ψ ∈ L2(Sβ; ℂ2)} .

ℒβ = − (∇ + iF)2 Sβ μ(β)

inf σ(ℒβ), σess(ℒβ) = [Θ0, + ∞), Θ0 = μ(π) ≈ 0.59.



Back to the effective model 




We have:

— 


— 


— If  is a ground state of , we have for any ,





ℰμ(ψ) = ∫Sβ
(| (∇ + iF)ψ |2 − μ |ψ |2 +

μ
2

|ψ |4 )dx

ℰμ(0) = 0

ℰμ(ψ) ≥ (μ(β) − μ)∫Sβ

|ψ |2 dx +
μ
2 ∫Sβ

|ψ |4 dx .

ψgs μ(β) t > 0

ℰμ(tψgs) ≤ t2(μ(β) − μ)∫Sβ

|ψgs |2 dx + t4 ∫Sβ

|ψgs |4 dx .



Consider where





Proposition 1. (Fournais—Bonnaillie-Noël, 2007)

1. If  then  and  is a minimizer.


2. If  and  then 


3. If  then  and there is a 

minizimizer .


E(μ) = inf
ψ∈W1,2

F (Sβ)
ℰμ(ψ),

ℰμ(ψ) = ∫Sβ
(| (∇ + iF)ψ |2 − μ |ψ |2 +

μ
2

|ψ |4 )dx .

μ ≤ μ(β), E(μ) = 0 ψ = 0
μ > μ(β) μ(β) < Θ0, E(μ) < 0.
μ(β) < μ < Θ0, −∞ < E(μ) < 0

ψ* ≠ 0



Proposition 1. (Fournais—Bonnaillie-Noël, 2007)

Let 


1. If  then  and  is a minimizer.


2. If  and  then 


3. If  then  and there is a 

minizimizer .


Question 1. When  ?


Question 2. Does  for  ?


E(μ) = inf
ψ∈W1,2

F (Sβ)
ℰμ(ψ) .

μ ≤ μ(β), E(μ) = 0 ψ = 0
μ > μ(β) μ(β) < Θ0, E(μ) < 0.
μ(β) < μ < Θ0, −∞ < E(μ) < 0

ψ* ≠ 0

μ(β) < Θ0

−∞ < E(μ) < 0 μ = Θ0



Proposition 1. (Fournais—Bonnaillie-Noël, 2007)

Let 


1. If  then  and  is a minimizer.


2. If  and  then 


3. If  then  and there is a 

minizimizer . Moreover,  for 


Question 1. When  ?


Question 2. Does  for  ?


Question 3. Effective energy for  ?


E(μ) = inf
ψ∈W1,2

F (Sβ)
ℰμ(ψ) .

μ ≤ μ(β), E(μ) = 0 ψ = 0
μ > μ(β) μ(β) < Θ0, E(μ) < 0.
μ(β) < μ < Θ0, −∞ < E(μ) < 0

ψ* ≠ 0 E(μ) = − ∞ μ > Θ0 .

μ(β) < Θ0

−∞ < E(μ) < 0 μ = Θ0

μ > Θ0



On Question 1: 

Conjecture. (Bonnaillie 2005).  for 


Progress: 

i) [Jadallah 2001, Pan 2002, Bonnaillie 2005] For 


and  small.


ii) [Exner—Lotoreichik—Pérez-Obiol 2018] For 

iii) [Bonnaillie-Noël—Fournais—K.—Raymond, 2024] For 

 and  small.


μ(β) < Θ0 0 < β < π .

β ≤
π
2

+ ϵ

ϵ ≈ 0.011
β ≤ 0.595π .

π − δ ≤ β < π δ



On Question 2: 

Theorem 1. (Correggi-Giacomelli-K. 2023) 

Suppose that 


1. 


2.  and there is  such that 




Remark.  by Proposition 1.


μ(β) < Θ0 .
lim

μ↘Θ0

E(μ) = E(Θ0) .

−∞ < E(Θ0) < 0 ψ* ≠ 0
E(Θ0) = ℰΘ0

(ψ*) .

E(Θ0) < 0



To prove Theorem 1, we work in the corner region , with 

the “inner boundary” highlighted.










                    


                    

                                                    


Γβ(L, ℓ)

ℓ

L



Outline of Proof and an intermediate energy 
i) We show first that 


ii)  is defined as where 




iii)  is a layer of thickness  of a finite corner and  

means that  on the inner boundary of 


iv) A minimizer  on  converges to  as 


E(Θ0) = lim
μ↘Θ0

E(μ) = ED
corner(Θ0) .

ED
corner(Θ0) ED

corner(Θ0) = inf
(L,ℓ)∈𝒜

EL,ℓ(Θ0),

𝒜 = {(L, ℓ) : 1 ≤ ℓ < L tan(β/2) ≤ ℓ2},

EL,ℓ(μ) = inf
ψ∈𝒟0 ∫Γβ(L,ℓ)

(| (∇ + iF)ψ |2 − μ |ψ |2 +
μ
2

|ψ |4 )dx

Γβ(L, ℓ) ℓ ψ ∈ 𝒟0

ψ = 0 Γβ(L, ℓ) .

ψL,ℓ Γβ(L, ℓ) ψ* (L, ℓ) → ∞ .



On Question 3. 

Suppose that  Choose  such that





Let  where


 and  are coordinates defined by the 
tangential and normal distances to the boundary.


Let    .


Θ0 < μ < 1. ( f, α)

ℱα( f ) = inf
(g,ξ)

ℱξ(g), ℱξ(g) := ∫
ℓ

0
(|g′￼(t) |2 + (t + ξ)2 |g(t) |2 − μ |g(t) |2 +

μ
2

|g(t) |4 )dt .

𝒟 = {ψ : ψ = ψ0 on the inner boundary of Γβ(L, ℓ)},

ψ0(s, t) = f(t)eiαs− i
2 st, (s, t)

𝒢μ(ψ) = ∫Γβ(L,ℓ)
(| (∇ + iF)ψ |2 − μ |ψ |2 +

μ
2

|ψ |4 )dx



Let 


Theorem 2. (Correggi—Giacomelli 2021) 

The following limit exists (and depends on the angle )





Moreover, as  we have  

with  and .


Conjecture. For   we have  

GL,ℓ(μ) = inf
ψ∈𝒟

𝒢μ(ψ) .

β

G(μ) = lim
(L, ℓ) → ∞
(L, ℓ) ∈ 𝒜

(GL,ℓ(μ) − 2Lℱα( f )) .

β → π, G(μ) = − (π − β)C(μ) + o(1),
C(μ) > 0 C(Θ0) = 0

β < π, G(μ) = − (π − β)C(μ) .



Theorem 3. (Correggi—Giacomelli—K. 2023)

We have 


Remarks. 
i) The proof consists in showing that  where 

 is the intermediate energy used in the proof of Theorem 1.


ii) Since  the Correggi-Giacomelli conjecture is false, at least 

for  close to                                      


E(Θ0) = lim
μ↗Θ0

G(μ) .

lim
μ↗Θ0

G(μ) = ED
corner(Θ0),

ED
corner(Θ0)

E(Θ0) < 0,
μ Θ0 .



Theorem 3. (Correggi—Giacomelli—K. 2023)

We have 


Remarks. 
i) The proof consists in showing that  where 

 is the intermediate energy used in the proof of Theorem 1.


ii) Since  the Correggi-Giacomelli conjecture is false, at least 

for  close to                                       


iii) Will it hold for  not close to ?


E(Θ0) = lim
μ↗Θ0

G(μ) .

lim
μ↗Θ0

G(μ) = ED
corner(Θ0),

ED
corner(Θ0)

E(Θ0) < 0,
μ Θ0 .

μ Θ0



Geometric intuition behind the Correggi-Giacomelli conjecture 

(Correggi—Rougerie) For a smooth simply connected domain, the total 
curvature on the boundary is , and the contribution of surface 

superconductivity is  


(Correggi—Giacomelli) For a domain with  corners, the contribution is





and by the Gauss-Bonnet Theorem, 


2π

−C(μ)∫∂Ω
k(s)ds = − 2πC(μ) .

N

−C(μ)∫∂Ω
k(s)ds +

N

∑
i=1

Gβj
(μ),

∫∂Ω
k(s)ds +

N

∑
j=1

(π − βj) = 2π .








A possible extension: Magnetic steps 

A similar problem occurs when the magnetic field  is discontinuous 
along a broken line:


 on 


 on 


[Miranda, J. Math. Phys. 65, 
072101 (2024)]


B

B = 1 Ω1,δ

B = a Ω2,δ


