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We consider the operators St (q), for t = 0, 1, generated in L2[0,π] by the
di¤erential expression

�y 00(x) + q(x)y(x) (1)

and the boundary conditions

y(π) = e iπty(0), y 0(π) = e iπty 0(0) (2)

that is, periodic and antiperiodic boundary conditions, where q is the
trigonometric polynomial potential of the form

q(x) = q�me�i2mx + qme i2mx , m � 1, (3)

(q�mqm) 2 R and m 2 Z. Note that, in the case m = 1, potential (3)
can be considered as the optical potential

q (x) = (1+ 2V ) e i2x + (1� 2V ) e�i2x , V � 0, (4)

with q�1 = 1� 2V , q1 = 1+ 2V , V � 0. In our work, we investigate the
case m = 1 for the optical potential (4).
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It was proved by Veliev [17, O.A. Veliev, 2013 (see Theorem 1 and (26))]
that, if ab = cd , where a, b, c , and d are arbitrary complex numbers, then
the Hill operators S(q) and S(p) generated in L2(�∞,∞) by the
expression �y 00 + q(x)y with the potentials q(x) = ae�i2x + be i2x and
p(x) = ce�i2x + de i2x , have the same Hill discriminant, and hence the
same Bloch eigenvalues and spectrum. Therefore, the investigations of the
operators St (q), for t = 0, 1, can be reduced to the investigations of the
operators generated in L2[0,π] by the di¤erential expression �y 00 + q(x)y
and the boundary conditions (2) with the potential

p(x) = re�i2mx + re i2mx = 2rm cos(2mx), (5)

where
rm =

p
q�mqm .

In particular, r1 =
p
q�1q1 =

p
1� 4V 2.
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It is well known that the spectra of the operators S0 (q) and S1 (q) are
discrete and for large enough n, there are two periodic (if n is even) or
antiperiodic (if n is odd) eigenvalues (counted with multiplicity) in the
neighborhood of n2. See the basic and detailed classical results in the
works of Brown et al. [3, B.M. Brown, M.S.P. Eastham and K.M.
Schmidt, 2013], Levy and Keller [8, D.M. Levy and J.B. Keller, 1963],
Magnus, and Winkler [9, W. Magnus, and S. Winkler, 1969], Marchenko
[12, V. Marchenko, 1986] and references therein.
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Some physically interesting results have been obtained by considering the
optical potential (4). The detailed investigations of the periodic optical
potentials were illustrated on (4) in the papers [10, 11, K.G. Makris, R.
El-Ganainy, D.N. Christodoulides and Z.H. Musslimani, 2010, 2011]. For
the �rst time, the mathematical explanations of the nonreality of the
spectrum of the Hill operator S(q), generated in L2(�∞,∞) by the
di¤erential expression �y 00 + q(x)y with potential (4), for V > 0.5 and
�nding the threshold 0.5 (the �rst critical point V1) were given by Makris
et al. [10, 11, K.G. Makris, R. El-Ganainy, D.N. Christodoulides and Z.H.
Musslimani, 2010, 2011]. Moreover, using numerical methods they
sketched the real and imaginary parts of the �rst two bands for V = 0.85.
Midya et al. [13, B. Midya, B. Roy and R. Roychoudhury, 2010] reduced
the operator S(q) to the Mathieu operator and using the tabular values,
they established that there is a second critical point V2 � 0.888437 after
which no parts of the �rst and second bands remain real.
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Some of the most valuable results were given by Veliev [20, 21, O.A.
Veliev, 2018, 2020]. In [20, O.A. Veliev, 2018], he gave a complete
description, along with a mathematical proof, of the shape of the
spectrum of the Hill operator S(q) with potential (4), when V changes
from 1/2 to

p
5/2. Then, he extended his results for all V > 1/2 in [21,

O.A. Veliev, 2020].
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Note that, the trigonometric polynomial potential (3) is a PT-symmetric
potential if q�m , qm 2 R. For the properties of the general PT-symmetric
potentials, see [1, F. Bagarello, J.P. Gazeau, F.H. Szafraniec and M.
Znojil, 2015], [14, A. Mostafazadeh, 2010], [19, 22, O.A. Veliev, 2017,
2021] and references therein. Here, we only note that, the investigations of
PT-symmetric periodic potentials were initiated by Bender et al. [2, C.M.
Bender, G.V. Dunne and P.N. Meisinger, 1999].
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The eigenvalues of the operators S0(0) and S1(0) are (2n)2 and
(2n+ 1)2, for n 2 Z, respectively and all eigenvalues of S0(0) and S1(0),
except 0, are double. The eigenvalues of S0(q) and S1(q) are called the
periodic and antiperiodic eigenvalues and they are denoted by λn(q), for
n 2 Z and µn(q), for n 2 Z� f0g, respectively.
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It is well known that (see [5, MSP Eastham, 1974], [9, W. Magnus and S.
Winkler, 1966], [12, V. Marchenko, 1986]), if rm is a real nonzero number,
then all eigenvalues of the operator Ht (rm), generated in L2[0,π] by
expression �y 00 + q(x)y and the boundary conditions (2) with
potential (5), are real, for all t 2 (�1, 1], and the spectrum σ(H(rm)) of
the Hill operator H(rm), generated in L2(�∞,∞) by expression (1) with
potential (5), consists of the real intervals

Γ1 : = [λ0(rm), µ�1(rm)], Γ2 := [µ+1(rm),λ�1(rm)],
Γ3 : = [λ+1(rm), µ�2(rm)], Γ4 := [µ+2(rm),λ�2(rm)], . . . ,

where λ0(rm), λ�n(rm), λ+n(rm), for n = 1, 2, . . . are the eigenvalues of
H0(rm) and µ�n(rm), µ+n(rm), for n = 1, 2 . . . are the eigenvalues of
H1(rm) and the following inequalities hold:

λ0(rm) < µ�1(rm) � µ+1(rm) < λ�1(rm) � λ+1(rm) < µ�2(rm)

� µ+2(rm) < λ�2(rm) � λ+2(rm) < � � � .
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The bands Γ1, Γ2, . . . of the spectrum σ(H(rm)) of H(rm) are separated
by the gaps

∆1 := (µ�1(rm), µ+1(rm)), ∆2 := (λ�1(rm),λ+1(rm)),

∆3 := (µ�2(rm), µ+2(rm)), . . .

if and only if the eigenvalues at the endpoints of the intervals are simple.
In other notation, Γn = fγn(t) : t 2 [0, 1]g, where γ1(t),γ2(t), . . . are
the eigenvalues of Ht (rm), called as Bloch eigenvalues corresponding to
the quasimomentum t. The Bloch eigenvalue γn(t), continuously depends
on t and γn(�t) = γn(t). These statements continue to hold for St (q)
and S(q) if q�mqm > 0.
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Obviously, λ�n(rm) and λ+n(rm), for n = 1, 2, . . . are the (2n)th and
(2n+ 1)th periodic eigenvalues; µ�n(rm) and µ+n(rm), for n = 1, 2, . . .
are the (2n� 1)th and (2n)th antiperiodic eigenvalues, respectively.
If one of the numbers q�m and qm is zero and the other is real in (3), then
all eigenvalues of the operator S0(q), except 0, are double and they are
equal to (2n)2. This fact was proved for the �rst time in [6, M.G.
Gasymov, 1980]. This case was investigated also in [7, N.B. Kerimov,
2013], [15, C. Nur, 2021], [18, O.A. Veliev, 2015]. In [15, C. Nur, 2021],
we investigated the operators St (q), for t = 0, 1, with potential (3), when
the periodic and antiperiodic eigenvalues are real.
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In this work, we give estimates for the eigenvalues of S0(q) and S1(q),
when (q�mqm) 2 R. We even approximate complex eigenvalues by the
roots of some polynomials derived from some iteration formulas. Finally,
we give numerical examples with error analysis using Rouche�s theorem.
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It is well known that [16, J. Poschel and E. Trubowitz, 1987], [21, 22, O.
A. Veliev, 2020, 2021]

jλ�n(q)� λ�n(0)j � sup
x2[0,π]

jp(x)j = 2jrm j,

jµ�n(q)� µ�n(0)j � sup
x2[0,π]

jp(x)j = 2jrm j,

for n = 1, , 2 . . ., where λ�n(0) = (2n)2, µ�n(0) = (2n� 1)2 and
rm =

p
q�mqm . Moreover, for n = 0, jλ0(q)j � 2jrm j holds. Therefore,

we have
(2n)2 � 2jrm j � jλn j � (2n)2 + 2jrm j

and

jλn � (2k)2j � j(2n)2 � (2k)2j � 2jrm j = 4jn� k jjn+ k j � 2jrm j
� 4j2n� 1j � 2jrm j,

for n 2 Z and k 6= �n.
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In particular, if n = 1, we have jλ�1j � 4+ 2jrm j and

jλ�1 � (2k)2j � jjλ�1j � (2k)2j � 16� jλ�1j � 12� 2jrm j,

for k � 2. Besides, if jnj � 2, we have jλn j � jλ�2j � 16� 2jrm j and

jλn � (2k)2j � jjλ�2j � (2k)2j � jλ�2j � 4 � 12� 2jrm j,

for k 6= �n. The analogous inequalities can be written for the antiperiodic
eigenvalues from

(2n� 1)2 � 2jrm j � jµ�n j � (2n� 1)2 + 2jrm j, (6)

for n = 1, 2, . . ..
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First, we consider the operator S0(q) which is associated with the periodic
boundary conditions. From now on, when we use the notation λn, we
mean the (2n)th and (2n+ 1)th periodic eigenvalues λ�n and λ+n, for
n = 1, 2, . . .. We begin with the equations

(λN � (2n)2)(ΨN , e
i2nx ) = (qΨN , e

i2nx ), (7)

(λN � (2n)2)(ΨN , e
�i2nx ) = (qΨN , e

�i2nx ) (8)

which are obtained from

�Ψ00N (x) + q(x)ΨN (x) = λNΨN (x),

by multiplying both sides of the equality by e i2nx and e�i2nx , respectively,
where ΨN (x) is the eigenfunction corresponding to the eigenvalue λN .
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Iterating equation (7) k times for N = n, the way it was done in the
paper [4, N. Dernek and O.A. Veliev , 2005], we obtain

�
λn � (2n)2 �

k

∑
j=1

αj (λn)
�
(Ψn, e i2nx )�

�
q2n +

k

∑
j=1

βj (λn)
�
(Ψn, e�i2nx ) = ρk (λn), (9)

where

αj (λn) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq�n1�n2�����nj
[λn � (2(n� n1))2] � � � [λn � (2(n� n1 � � � � � nj ))2]

,

βj (λn) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq2n�n1�n2�����nj
[λn � (2(n� n1))2] � � � [λn � (2(n� n1 � � � � � nj ))2]

,

ρk (λn) = ∑
n1,n2,...,nk+1

qn1qn2 � � � qnkqnk+1(qΨn, e i2(n�n1�����nk+1)x )
[λn � (2(n� n1))2] � � � [λn � (2(n� n1 � � � � � nk+1))2]

.
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Here, the sums are taken under the conditions nl = �m,
l

∑
i=1
ni 6= 0, 2n for

l = 1, 2, ..., k + 1. Note that, for the trigonometric polynomial potential of
the form (3), we have qi = 0 for i 6= �m.
Similarly, iterating equation (8) k times for N = n, we obtain
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�
λn � (2n)2 �

k

∑
j=1

α�j (λn)
�
(Ψn, e�i2nx )�

�
q�2n +

k

∑
j=1

β�j (λn)
�
(Ψn, e i2nx ) = ρ�k (λn), (10)

where

α�j (λn) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq�n1�n2�����nj
[λn � (2(n+ n1))2] � � � [λn � (2(n+ n1 + � � �+ nj ))2]

,

β�j (λn) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq�2n�n1�n2�����nj
[λn � (2(n+ n1))2] � � � [λn � (2(n+ n1 + � � �+ nj ))2]

,

ρ�k (λn) = ∑
n1,n2,...,nk+1

qn1qn2 � � � qnkqnk+1(qΨn, e�i2(n+n1+���+nk+1)x )
[λn � (2(n+ n1))2] � � � [λn � (2(n+ n1 + � � �+ nk+1))2]

.

Here, the sums are taken under the conditions nl = �m,
l

∑
i=1
ni 6= 0,�2n

for l = 1, 2, ..., k + 1.
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Since the potential q is the trigonometric polynomial potential of the
form (3), we have the followings, after some calculations (see [15, C. Nur,
2021]):

α�2j�1(λn) = α2j�1(λn), α�2j (λn) = α2j (λn) = 0,

β�j (λn) =
�q�m
qm

�2n/m
βj (λn), (11)

for j = 1, 2, . . ..
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In order to give the main results, we need the following lemma. Without
loss of generality, we assume that Ψn(x) is the normalized eigenfunction
corresponding to the eigenvalue λn.

Lemma
The statements
(a) limk!∞ ρk (λn) = 0, limk!∞ ρ�k (λn) = 0,
(b) jun j2 + jvn j2 > 0, where un = (Ψn, e i2nx ) and vn = (Ψn, e�i2nx ),
are valid in the following cases:
(i) if jr1j =

���p1� 4V 2��� < 3, for n � 1 and m = 1,
(ii) if jq�2j+ jq2j � 29/10, for n = 1 and m = 2,
(iii) if jq�m j+ jqm j � 7/2, for n = 1 and m � 3,
(iv) if jrm j < 2s � 1, for n � s, s = 2, 3, . . . and m � 2, where
rm =

p
q�mqm .
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Now, we consider the statements of Lemma 1 for the case n = 0:

Lemma
The statements (a) limk!∞ ρk (λ0) = 0 and (b) j(Ψ0, 1)j > 0 hold in the
following cases:
(i) if jq�2j+ jq2j � 2, for m = 2,
(ii) if jq�m j+ jqm j � 3, for m � 3.

Letting k tend to in�nity in the equations (9) and (10), we obtain the
following results. First, we consider the case n � 2 for m = 1.
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Theorem

If jr1j =
���p1� 4V 2��� < 3 and n � 2, then λ is an eigenvalue of S0(q) if

and only if it is either the root of the equation

λ� (2n)2 �
∞

∑
k=1

α2k�1(λ)�
�q�1
q1

�n ∞

∑
k=2

β2k�1(λ) = 0 (12)

or the root of

λ� (2n)2 �
∞

∑
k=1

α2k�1(λ) +
�q�1
q1

�n ∞

∑
k=2

β2k�1(λ) = 0 (13)

lying inside the circle Cn := fλ 2 C : jλ� (2n)2j = 2jr1jg and each of the
series in these equations converges uniformly to an analytic function on
the disk Dn := fλ 2 C : jλ� (2n)2j � 2jr1jg. Moreover, the roots
of (12) and (13) lying in Dn, coincide with the (2n)th and (2n+ 1)th
periodic eigenvalues λ�n and λ+n of S0.
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Now we consider the case n � 2 for m � 2.
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Theorem
Suppose that jrm j < 2s � 1, for n � s, s = 2, 3, . . . and m � 2, where
rm =

p
q�mqm .

(a) If m is even and n = m/2, then λ is an eigenvalue of S0(q) if and
only if it is either the root of the equation

λ� (2n)2 � rm �
∞

∑
j=1

α2j�1(λ) = 0 (14)

or the root of

λ� (2n)2 + rm �
∞

∑
j=1

α2j�1(λ) = 0, (15)

(b) If n = m, then λ is an eigenvalue of S0(q) if and only if it is either the
root of

λ� (2n)2 � 2r
2
m

λ
� rm2

λ� 16n2 �
∞

∑
j=2

α2j�1(λ) = 0 (16)

or the root of
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λ� (2n)2 � rm2

λ� 16n2 �
∞

∑
j=2

α2j�1(λ) = 0, (17)

(c) If n 6= m and n 6= m/2, then λ is an eigenvalue of S0(q) if and only if
it is either the root of

λ� (2n)2 �
∞

∑
j=1

α2j�1(λ)�
�q�m
qm

�n/m
∞

∑
j=1

βj (λ) = 0 (18)

or the root of

λ� (2n)2 �
∞

∑
j=1

α2j�1(λ) +
�q�m
qm

�n/m
∞

∑
j=1

βj (λ) = 0 (19)

lying inside the circle Cn := fλ 2 C : jλ� (2n)2j = 2jrm jg and each of
the series in these equations converges uniformly to an analytic function
on the disk Dn := fλ 2 C : jλ� (2n)2j � 2jrm jg.
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Now, for the case n = 1 and m = 1 we have:
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Theorem

If jr1j =
���p1� 4V 2��� < 3, then:

(a) the �rst periodic eigenvalues λ0 and λ�1 are the roots of the equation

λ2 � 4λ� 2r21 �
r21 λ

λ� 16 �
∞

∑
k=2

λα2k�1(λ) = 0 (20)

lying in the disk D1 := fλ 2 C : jλj � 2jr1j+ 4g and the series
∞
∑
k=2

α2k�1(λ) converges uniformly to an analytic function on the disk D1.

Moreover, (20) has exactly two roots (counting with multiplicities) inside
the circle C1 := fλ 2 C : jλj = 2jr1j+ 4g and these roots coincide with
the �rst two eigenvalues λ0 and λ�1 of S0.
(b) the third periodic eigenvalue λ+1 is the root of

λ� 4� r21
λ� 16 �

∞

∑
k=2

α2k�1(λ) = 0 (21)

lying in the disk D1.
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Moreover, (21) has exactly one root (counting with multiplicity) inside the
circle C1 and this root coincide with the third eigenvalue λ+1 of S0.

Here we note that, the proof of (a) was given by Veliev [20, O.A. Veliev,
2018] for jr1j < 2. Besides, he gave the spectral analysis of the operators
St (q), for t = 0, 1, and S(q). We have derived the same equation by
another method of him. In our work, we have proved that the statements
in (a) are still true for jr1j < 3.

Now, we have the following results for the case n = 1 and m � 2 to
estimate the periodic eigenvalues λ�1 and λ1.
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Theorem
(a) If jq�2j+ jq2j � 29/10, for n = 1 and m = 2, then λ is an eigenvalue
of S0(q) if and only if it is either the root of the equation

λ� 4� r2 �
∞

∑
j=1

α2j�1(λ) = 0 (22)

or the root of

λ� 4+ r2 �
∞

∑
j=1

α2j�1(λ) = 0, (23)

(b) If jq�m j+ jqm j � 7/2, for n = 1 and m � 3, then λ is a double
eigenvalue of S0(q) if and only if it is the double root of the equation

�
λ� 4�

∞

∑
j=1

α2j�1(λ)
�2
= 0 (24)

lying inside the circle C1 := fλ 2 C : jλj � 2jrm j+ 4g and the series
∞
∑
j=1

α2j�1(λ) converges uniformly to an analytic function on the disk
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D1 := fλ 2 C : jλj � 2jrm j+ 4g in each case.

Finally, in order to estimate the �rst periodic eigenvalue λ0 for m � 2, we
consider the case n = 0 and m � 2. By Lemma 2, we have:

Theorem
(a) If jq�2j+ jq2j � 2, for n = 0 and m = 2,
(b) If jq�m j+ jqm j � 3, for n = 0 and m � 3,
then λ is an eigenvalue of S0(q) if and only if it is the root of the equation

λ�
∞

∑
j=1

α2j�1(λ) = 0 (25)

lying inside the circle C0 := fλ 2 C : jλj � 2jrm jg and the series
∞
∑
j=1

α2j�1(λ) converges uniformly to an analytic function on the disk

D0 := fλ 2 C : jλj � 2jrm jg.
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In order to estimate eigenvalues numerically, we take �nite summations
instead of the in�nite series in the equations (12)-(25). When we say the

(2k � 1)th approximations, we mean the equations containing
k
∑
j=1

α2j�1(λ)

and
k
∑
j=1

β2j�1(λ) instead of
∞
∑
j=1

α2j�1(λ) and
∞
∑
j=1

β2j�1(λ). For instance, in

the case m = 2, the (2k � 1)th approximations of the above equations are

λ�
k

∑
j=1

α2j�1(λ) = 0, (26)

for n = 0;

λ� 4� r2 �
k

∑
j=1

α2j�1(λ) = 0, (27)

λ� 4+ r2 �
k

∑
j=1

α2j�1(λ) = 0, (28)
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for n = 1; and

λ� 16� 2r2
2

λ
� r22

λ� 64 �
k

∑
j=2

α2j�1(λ) = 0, (29)

λ� 16� r22

λ� 64 �
k

∑
j=2

α2j�1(λ) = 0, (30)

for n = 2.
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In particular, we obtain practical equations to calculate the small
eigenvalues for the case m = 1, namely for the optical potential. If we
consider the (2k � 1)th approximation

λ2 � 4λ� 2r21 �
r21 λ

λ� 16 �
k

∑
j=2

λα2j�1(λ) = 0 (31)

for the �rst periodic eigenvalues λ0 and λ�1, the (2k � 1)th approximation

λ� 4� r21
λ� 16 �

k

∑
j=2

α2j�1(λ) = 0 (32)

for the third periodic eigenvalue λ+1, and the (2k � 1)th approximation

λ� (2n)2 �
k

∑
j=1

α2j�1(λ)�
�q�1
q1

�n k

∑
j=2

β2j�1(λ) = 0 (33)

for the other eigenvalues λ�n and λ+n of L0,
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then we have the following estimates for the remaining terms:

�� ∞

∑
j=k+1

A2j�1(λ1)
��< 312( 9

104
)k

and �� ∞

∑
j=k+1

A2j�1(λn)�
�q�1
q1

�n ∞

∑
j=k+1

B2j�1(λn)
��< 45

14
(
3
10
)k ,

for jr1j < 3 and n � 1. Obviously, we will have better approximations as k
grows. Besides, for a �xed k, this method gives better approximations as n
grows.
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Now, we approach the eigenvalues by the roots of the polynomials derived
from the (2k � 1)th approximations (31), (32), and (33), the way it was
done by Veliev in [20, O.A. Veliev, 2018]. For example, for m = 1, n = 1
and k = 3, we have the �fth approximations

Q1(λ) := λ2 � 4λ� 2c2 � c2λ
λ� 16 �

c4λ
(λ� 16)2(λ� 36)

� c6λ
(λ� 16)2(λ� 36)2(λ� 64) �

c6λ
(λ� 16)3(λ� 36)2 = 0,

and

Q�1(λ) := λ� 4� c2

λ� 16 �
c4

(λ� 16)2(λ� 36)

� c6

(λ� 16)2(λ� 36)2(λ� 64) �
c6

(λ� 16)3(λ� 36)2 = 0.
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Then,
P1(λ) := (λ� 16)3(λ� 36)2(λ� 64)Q1(λ)

and
P�1(λ) := (λ� 16)3(λ� 36)2(λ� 64)Q�1(λ) (34)

are polynomials of degree 8 and 7, respectively. By the same token, we
can derive polynomials to approximate the periodic eigenvalues, for n � 2.
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Similarly, for n = 0 and m = 2, the �fth approximation is

K0(λ) := λ� 2r22

λ� 16 �
2r24

(λ� 16)2(λ� 64)

� 2r26

(λ� 16)2(λ� 64)2(λ� 144) �
2r26

(λ� 16)3(λ� 64)2 = 0,

for n = 1 and m = 2, the �fth approximations are

K�1(λ) := λ� 4+ r2 �
r22

λ� 36 �
r24

(λ� 36)2(λ� 100)

� r26

(λ� 36)2(λ� 100)2(λ� 196) �
r26

(λ� 36)3(λ� 100)2 = 0,

and

K1(λ) := λ� 4� r2 �
r22

λ� 36 �
r24

(λ� 36)2(λ� 100)

� r26

(λ� 36)2(λ� 100)2(λ� 196) �
r26

(λ� 36)3(λ� 100)2 = 0,
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for n = 2 and m = 2, the �fth approximations are

K�2(λ) := λ� 16� 2r2
2

λ
� r22

λ� 64 �
r24

(λ� 64)2(λ� 144)

� r26

(λ� 64)2(λ� 144)2(λ� 256) �
r26

(λ� 64)3(λ� 144)2 = 0,

and

K2(λ) := λ� 16� r22

λ� 64 �
r24

(λ� 64)2(λ� 144)

� r26

(λ� 64)2(λ� 144)2(λ� 256) �
r26

(λ� 64)3(λ� 144)2 = 0.
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Then, the corresponding polynomials are

R0(λ) := (λ� 16)3(λ� 64)2(λ� 144)K0(λ), (35)

R�1(λ) := (λ� 36)3(λ� 100)2(λ� 196)K�1(λ), (36)

R1(λ) := (λ� 36)3(λ� 100)2(λ� 196)K1(λ), (37)

R�2(λ) := (λ� 64)3(λ� 144)2(λ� 256)K�2(λ) (38)

and
R2(λ) := (λ� 64)3(λ� 144)2(λ� 256)K2(λ), (39)

respectively. By the same token, we can derive polynomials to approximate
other periodic eigenvalues, as well.
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Now, we state the analogous theorems to Theorem 3 and Theorem 5 for
the operator S1(q) associated with the antiperiodic boundary conditions.

Theorem

(a) If jr1j =
���p1� 4V 2��� < 3 and n � 3, then µ is an eigenvalue of S1 if

and only if it is either the root of the equation

µ� (2n� 1)2 �
∞

∑
j=1
a2j�1(µ)�

�q�1
q1

�n�1/2
∞

∑
j=2
b2j (µ) = 0 (40)

or the root of

µ� (2n� 1)2 �
∞

∑
j=1
a2j�1(µ) +

�q�1
q1

�n�1/2
∞

∑
j=2
b2j (µ) = 0 (41)

lying inside the circle cn := fµ 2 C : jµ� (2n� 1)2j = 2jr1jg,
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where

aj (µ) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq�n1�n2�����nj
[µ� (2(n� n1)� 1)2] � � � [µ� (2(n� n1 � � � � � nj )� 1)2]

,

bj (µ) = ∑
n1,n2,...,nj

qn1qn2 � � � qnjq2n�1�n1�n2�����nj
[µ� (2(n� n1)� 1)2] � � � [µ� (2(n� n1 � � � � � nj )� 1)2]

,

and each of the series in these equations converges uniformly to an
analytic function on the disk dn := fµ 2 C : jµ� (2n� 1)2j � 2jr1jg.
Moreover, the roots of (40) and (41) lying in dn, coincide with the
eigenvalues µ�n and µ+n of S1.
(b) In the case n = 2, the statements in (a) are valid for jr1j < 2.
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Now, for n = 1, we have:

Theorem
If jr1j < 2, then µ is an eigenvalue of S1 if and only if it is either the root
of the equation

µ� 1� a�
∞

∑
j=1
a2j�1(µ) = 0 (42)

or the root of

µ� 1+ a�
∞

∑
j=1
a2j�1(µ) = 0 (43)

lying inside the circle c1 := fµ 2 C : jµj = 2jr1j+ 1g and each of the
series in these equations converges uniformly to an analytic function on
the disk d1 := fµ 2 C : jµj � 2jr1j+ 1g. Moreover, the roots of (42)
and (43) lying in d1, coincide with the �rst antiperiodic eigenvalues µ�1
and µ+1.
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Now, let us approach the antiperiodic eigenvalues by the polynomials
derived from the (2k � 1)th approximations of (40)-(43). For n = 1,
k = 3, and j = 1, 2, we have

Hj (µ) := µ� 1+ (�1)ja� c2

µ� 9 �
c4

(µ� 9)(µ� 25)

� c6

(µ� 9)2(µ� 25)2(µ� 49) �
c6

(µ� 9)3(µ� 25)2 = 0.

Then,
Sj (µ) := (µ� 9)3(µ� 25)2(µ� 49)Hj (µ) (44)

is a polynomial of degree 7. By the same token, we can derive polynomials
to approximate the antiperiodic eigenvalues, for n � 2.
Now, we present a numerical example for the case m = 1:
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Example

For k = 3 and r21 = 1� 4V 2 = �2.157281295, Veliev [20, O.A. Veliev,
2018] approximated the �rst periodic eigenvalues λ0 and λ�1 for the
optical potential q (x) = (1+ 2V ) e i2x + (1� 2V ) e�i2x . Now, we have
the following approximations for the third periodic eigenvalue λ+1 and the
�rst antiperiodic eigenvalues µ�1 and µ+1:
First, we show that λ+1 is the real eigenvalue lying inside the circle

C = fλ 2 C : jλ� 4.1814942277j = 1.7� 10�6g.

The root of the polynomial P�1(λ) de�ned by (34), lying in the disk
D1 = fλ 2 C : jλj � 2jr1j+ 4g, is p1 = 4.1814942277. The other roots
of P�1(λ) are p2 = 15.8535021182,
p3 = (15.9823184944� 0.119095369803i),
p4 = (15.9823184944+ 0.119095369803i),
p5 = (36.000183379� 0.00333664975667i),
p6 = (36.000183379+ 0.00333664975667i) and p7 = 63.9999999074.
Using the decomposition
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Q�1(λ) =
(λ� p1)(λ� p2) � � � (λ� p7)
(λ� 16)3(λ� 36)2(λ� 64) ,

we obtain by direct calculation jQ�1(λ)j > 1.8496� 10�7, for all λ 2 C .
On the other hand, again by direct calculations, we have

∞
∑
k=4

jα2k�1(λ)j < 1.8269� 10�7, for all λ 2 C . Therefore, by Rouche�s
theorem, equation (21) has only one root inside the circle C . Thus, using
Theorem 5 (b) and the spectral analysis of S0 given by Veliev [20, O.A.
Veliev, 2018], we conclude that λ+1 is the real eigenvalue lying inside the
circle C .
Now, we show that µ�1 and µ+1 are the complex eigenvalues lying inside
the circles

δ1 = fµ 2 C : jµ� (1.26575008922� 1.52020432568i)j = 1.4� 10�5g

and

δ2 = fµ 2 C : jµ� (1.26575008922+ 1.52020432568i)j = 1.4� 10�5g,

respectively.
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The roots of the polynomials S1(µ) and S2(µ) de�ned by (44), lying in
the disk d1 = fµ 2 C : jµj � 2jc j+ 1g are
x1 = (1.26575008922+ 1.52020432568i) and
y1 = (1.26575008922� 1.52020432568i), respectively. The other roots of
S1(µ) are x2 = (8.96777697119+ 0.142338162679i),
x3 = (8.79563202223� 0.0317230792875i),
x4 = (8.97007606112� 0.162097407292i),
x5 = (25.0005579806� 0.00577397577187i),
x6 = (25.0002071021+ 0.00582061314113i) and
x7 = (48.9999997735� 0.00000000692262634543i) and the other roots of
S2(µ) are y2 = (8.96777697119� 0.142338162679i),
y3 = (8.79563202223+ 0.0317230792875i),
y4 = (8.97007606112+ 0.162097407292i),
y5 = (25.0005579806+ 0.00577397577187i),
y6 = (25.0002071021� 0.00582061314113i) and
y7 = (48.9999997735+ 0.00000000692262634543i).

(Yalova University) 07/09 1 / 1



Using the decompositions

H1(µ) =
(µ� x1)(µ� x2) � � � (µ� x7)
(µ� 9)3(µ� 25)2(µ� 49)

and

H2(µ) =
(µ� y1)(µ� y2) � � � (µ� y7)
(µ� 9)3(µ� 25)2(µ� 49) ,

by direct calculations, we obtain jH1(µ)j > 4.6113� 10�6, for all µ 2 δ2
and jH2(µ)j > 4.6113� 10�6, for all µ 2 δ1. On the other hand, one can

easily calculate that
∞
∑
k=4

ja2k�1(λ)j < 4.4786� 10�6, for all µ 2 δ1 [ δ2.

The proof follows from Rouche�s theorem and Theorem 9; each of the
equations (37) and (38) has only one root inside the circle δ2 and δ1,
respectively and µ�1 and µ+1 are the complex eigenvalues lying inside δ1
and δ2, respectively.
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Now, we present another numerical example.

Example

Consider the potential q(x) = e i4x � e�i4x = 2i sin(4x) or
p(x) = ie i4x + ie�i4x = 2i cos(4x). In this case, m = 2, r2 =

p
�1 = i

and we have the following approximations for the �rst periodic eigenvalues
λ0, λ�1, λ+1, λ�2 and λ2:
First, we show that λ0 is the eigenvalue lying inside the circle

c0 := fλ 2 C : jλ� 0.125867010858j = 4.8� 10�10g.

The root of the polynomial R0(λ) de�ned by (35), lying in the disk
D0 = fλ 2 C : jλj � 2jr2jg, is a1 = 0.125867010858. The other roots of
R0(λ) are a2 = 15.8939999572,
a3 = (15.9900597315� 0.0204223963085i),
a4 = (15.9900597315+ 0.0204223963085i),
a5 = (64.0000067845� 0.000336043226373i) ,
a6 = (64.0000067845+ 0.000336043226373i) and a7 = 144.0. Using the
decomposition
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K0(λ) =
(λ� a1)(λ� a2) � � � (λ� a7)
(λ� 16)3(λ� 64)2(λ� 144) ,

we obtain by direct calculation jK0(λ)j > 4.4990� 10�10, for all λ 2 c0.
On the other hand, again by direct calculations, we have
∞
∑
j=4
jα2j�1(λ)j < 2.6416� 10�10, for all λ 2 c0. Therefore, by Rouche�s

theorem, equation (32) has only one root inside the circle c0. Thus, using
Theorem 7 (a), we conclude that λ0 is the eigenvalue lying inside the
circle c0.
Now, we show that λ�1 and λ1 are the complex eigenvalues lying inside
the circles

c�1 := fλ 2 C : jλ� (4.0312397462� 1.00097772667i)j = 8.8� 10�12g.

and

c1 := fλ 2 C : jλ� (4.0312397462+ 1.00097772667i)j = 8.8� 10�12g.

respectively.
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The roots of the polynomials R�1(λ) and R1(λ) de�ned by (36)
and (37), lying in the disk D1 = fλ 2 C : jλj � 4+ 2jr2jg are
x1 = (4.0312397462� 1.00097772667i) and
y1 = (4.0312397462+ 1.00097772667i), respectively. The other roots of
R�1(λ) are x2 = (35.9964522039+ 0.0176168557191i),
x3 = (35.9964154572� 0.0172437280769i),
x4 = (35.9758900488+ 0.00060462552073i),
x5 = (100.00000187+ 0.000114737272348i),
x6 = (100.000000674� 0.000114763768311i),
x7 = (196.0+ 1.20513462491e � 13i) and the other roots of R1(λ) are
y2 = (35.9964522039� 0.0176168557191i),
y3 = (35.9964154572+ 0.0172437280769i),
y4 = (35.9758900488� 0.00060462552073i),
y5 = (100.00000187� 0.000114737272348i),
y6 = (100.000000674+ 0.000114763768311i) and
y7 = (196.0� 1.20513462491e � 13i).
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Using the decompositions

K�1(λ) =
(λ� x1)(λ� x2) � � � (λ� x7)
(λ� 36)3(λ� 100)2(λ� 196) ,

and

K1(λ) =
(λ� y1)(λ� y2) � � � (λ� y7)
(λ� 36)3(λ� 100)2(λ� 196) ,

by direct calculations, we obtain jK�1(λ)j > 3.5600� 10�12, for all
λ 2 c�1 and jK1(λ)j > 3.5600� 10�12, for all λ 2 c1. On the other
hand, one can easily calculate that

∞
∑
j=4
jα2j�1(λ)j < 2.0038� 10�12, for

all λ 2 c�1 [ c1. The proof follows from Rouche�s theorem and
Theorem 6 (a); each of the equations (22) and (23) has only one root
inside the circle c�1 and c1, respectively and λ�1 and λ+1 are the complex
eigenvalues lying inside c�1 and c1, respectively.
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Using the equations (38) and (39), Theorem 4 (b) and the estimations
jK�2(λ)j > 3.7055� 10�9, for all λ 2 c�2; jK2(λ)j > 2.3100� 10�9, for
all λ 2 c2 and

∞
∑
j=4
jα2j�1(λ)j < 1.1464� 10�9, for all λ 2 c�2 [ c2, one

can show in a similar way that λ�2 and λ2 are the eigenvalues lying inside
the circles

c�2 := fλ 2 C : jλ� 15.8949584087j = 1.9� 10�9g.

and
c2 := fλ 2 C : jλ� 16.0208389883j = 1.9� 10�8g.

respectively.
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