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Motivation

Integrable and superintegrable systems are distinguished by their
symmetry, which enables to solve their equations of motion exactly,
in quadratures or even algebraically, respectively. Due to these
properties they serve as a basis for perturbative models of more
complex situations.

However, most integrable and superintegrable system were studied
in the absence of magnetic field. Although this consideration is
well justified on the mathematical grounds, as it makes the analysis
considerably easier, there are many physical situations when
magnetic field is present, e.g. in plasma physics. We therefore
deem it necessary to extend the current knowledge in this direction.
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Quadratic integrability and superintegrability, magnetic
field

We consider integrable and superintegrable systems in three spatial
dimensions.

Integrability

A classical Hamiltonian system with n degrees of freedom is
integrable if it admits n functionally independent integrals of
motion in involution.

Superintegrability

A classical Hamiltonian system with n degrees of freedom is
polynomially superintegrable if it admits n + k functionally
independent integrals of motion (where k ≤ n − 1), that are
polynomial in the momenta and out of which n are in involution.

In 3D: 4 integrals = minimal superintegrability, 5 integrals =
maximal superintegrability.
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Magnetic field and canonical momenta

The vector potential is represented by a 1-form

A(~x) = A1(~x)dx1 + A2(~x)dx2 + A3(~x)dx3

and the magnetic field 2-form

B = dA =

(
∂A3
∂x2

− ∂A2
∂x3

)
dx2 ∧ dx3 + cycl.

We stress that the formula holds in curvilinear coordinates.
In our choice of units the charge of the particle is −1 and we
define the momenta covariant with respect to a time-independent
gauge transformation A′(~x) = A(~x) + dχ(~x), W ′(~x) = W (~x) as

pA
i = pi + Ai = mvi .
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The Hamiltonian system and integrals

We assume the 3D Euclidean space, therefore the Hamiltonian of
the system after scaling the mass to 1 reads

H(~x , ~p) = 1
2

3∑
j=1

(
pA

i

)2
+ W (~x).

Note that the Hamiltonian contains first order terms in momenta.
We assume a second order integral,

X =
3∑

j=1
hj(~x)pA

j pA
j +

3∑
j,k,l=1

1
2 |εjkl |nj(~x)pA

k pA
l +

3∑
j=1

s j(~x)pA
j +m(~x).
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Reduced integral

The condition for the integral X ,

{H,X} = 0,

separates into terms of order 3, 2, 1 and 0 in the momenta. The
third order ones do not depend on ~B and can thus be easily solved.
We get the following form of the integral with 20 constants αij , βij
and γij . Here we use the covariant angular momenta `A

i = εijkxjpA
k .

X =
∑

i,j: i≤j
αij`

A
i `

A
j +

∑
i,j

βijpA
i `

A
j +

∑
i,j: i≤j

γijpA
i pA

j +

+ s1(x)pA
1 + s2(x)pA

2 + s3(x)pA
3 + m(x).

The lower order ones imply 10 linear PDEs on the functions
~s,m, ~B,W which also depend on the constants αij , βij and γij .
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Quadratic (super)integrability without magnetic field

No magnetic field:
Completely classified [Makarov et al. 1967].
The highest order terms of these integrals are determined by
a 1:1 correspondence with orthogonal separation of variables
of Hamilton–Jacobi equation.
Superintegrable systems are multiseparable, i.e. separate in
several orthogonal coordinate systems.
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Quadratic (super)integrability with magnetic field

With magnetic field
Only some separable cases were explored, far short of
classification (especially superintegrable).
The 1:1 correspondence is broken: Separability is much more
constraining, implies at least one first order integral.
The highest order terms of the integrals may no longer be
constrained to the separable cases. Using the highest order
determining equations, the forms of these terms were explored
in [Marchesiello and Šnobl 2022]. A particular integrable
system was found.
To classify integrable systems, the lower order determining
equations must be imposed to confirm that the systems from
[Marchesiello and Šnobl 2022] do not reduce to the
“standard” ones.
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Generalized cylindrical and spherical cases

Here we investigate integrability in two physically interesting cases
from [Marchesiello and Šnobl 2022], namely the generalized
cylindrical

X1 = (`A
3 )

2 − a`A
3 pA

3 + cpA
1 pA

3 + . . . , X2 = (pA
3 )

2 + . . .

and generalized spherical

X1 = (`A
3 )

2 + . . . , X2 = (`A
1 )

2 + (`A
2 )

2 + (`A
3 )

2 + a`A
3 pA

3 + . . .

We assume that the constants a, c do not both vanish.
Integrability implies

{X1,H} = 0, {X2,H} = 0, {X1,X2} = 0,

and we solve the corresponding determining equations in the
adapted coordinates.
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Generalized spherical case

In the generalized spherical case only one integrable system is
found,

~B(~x) = (0, 0, b1) , W (x , y) = −b2
1
8 (x2 + y2)− w1

x2 + y2 .

However, it is not new [Marchesiello, Šnobl, and Winternitz 2018]:
It admits 2 cylindrical first order integrals

pA
z , `A

z − b1
2 (x2 + y2),

therefore the additional term proportional to a in X2 is an integral
and it reduces to the standard spherical integral

X2 = (`A
1 )

2 + (`A
2 )

2 + (`A
3 )

2 + . . .
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Generalized cylindrical case - integrability I

Let us now focus on generalized cylindrical case. If we exclude the
known standard cylindrical (a = c = 0) and Cartesian systems, we
obtain one system for each combination of constants a, c
vanishing/nonvanishing. (Some special cases were known.)

We use the shorthand r =
√

x2 + y2.
a 6= 0, c 6= 0

Bx = b2(ay + c), By = −b2ax , Bz = −(3b2r2 + 2b1),

W = b2

[
−b2

4 r6 − b2a2 + 4b1
8 r4 − acb2

2 r2y +
b2c2

2 x2

+ w1r2 + w2x + w3y
]
,
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Generalized cylindrical case - integrability II

a = 0, c 6= 0

Bx = b3x + cb2, By = b3y , Bz = −(2b3z + 3b2r2 + b1),

W =
b2

3
8 z4 − b3w1

2 z3 − z2
(

b2
3
2 r2 − b2b3

2 cx +
w2b3

4 − w2
1

2

)
− z

(
3b2b3

4 r4 +
b3b1

2 r2 −
b2

3 − 2b2w1
2 cx +

w3b3
2 − w2w1

2

)
− b2

2
4 r6 +

(w1 − b1)b2
4 r4 +

b2b3
2 cxr2 +

b2
2
2 c2x2+

+

(
w1(b1 + w1)

2 − b2w3
2

)
r2 +

b3(b1 + w1)− b2w2
2 cx ,
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Generalized cylindrical case - integrability III

a 6= 0, c = 0

Bx = − b2y − b3 cos

(
2z
a

)
, By = b2x + b3 sin

(
2z
a

)
,

Bz =
b2
a r2 + b1,

W = − (b2a2 − w1)

[
b2
8a2 r4 +

2b1a + w1
8a2 r2

+
b3
4

(
x sin

(
2z
a

)
+ y cos

(
2z
a

))]
.

All these fields do not contain undetermined functions, only
parameters bi ,wj , in contrast to standard cases.
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Helical undulator – a superintegrable system

Due to the constrained magnetic field, it is subsequently easy to
search for superintegrable systems among them. However, they are
very rare, we have found only one such system so far.

~B (x , y , z) =
(
−b3 cos

(
2z
a

)
, b3 sin

(
2z
a

)
, b1

)
, W (x , y , z) = 0,

~A (x , y , z) =
(
−b3a

2 cos

(
2z
a

)
, b1x +

b3a
2 sin

(
2z
a

)
, 0
)
.

It is new if both bi 6= 0, otherwise the system is known from
[Marchesiello, Šnobl, and Winternitz 2015]. It describes motion of
an electron in a nonrelativistic limit of a helical undulator in a
solenoid, neglecting the produced radiation.
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Helical undulator – Integrals

It admits 3 first order integrals

Y1 = pA
x + b1y +

b3a
2 cos

(
2z
a

)
,

Y2 = pA
y − b1x − b3a

2 sin

(
2z
a

)
,

Y3 = `A
z − a

2pA
z − 1

2

[
b1r2 + b3a sin

(
2z
a

)
x + b3a cos

(
2z
a

)
y
]
.

which do not Poisson commute

{Y1,Y2} = b1, {Y1,Y3} = −Y2, {Y2,Y3} = Y1.

The system is integrable of the Cartesian type due to a dependent
integral X2 = 2H − (Y 2

1 + Y 2
2 + 2b1Y3) = p2

z + . . ., a Casimir
invariant.
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Helical undulator - nonseparable system

The helical undulator is not separable in any coordinates. It is the
first such superintegrable system with a magnetic field.

This follows from [Benenti, Chanu, and Rastelli 2001]: They prove
that the separation on a real Riemannian manifold must be
orthogonal and is thus connected to the 11 separable systems
known from the scalar case. Our system does not have the
corresponding form of integrals except in the Cartesian case.

For a fixed coordinate system (e.g. Cartesian), this can be checked
using the Levi-Civita separation conditions [Levi-Civita 1904] (no
sum over indices i 6= j, ∂i ≡ ∂x i , ∂j ≡ ∂pj )

∂ i∂jH∂iH∂jH + ∂i∂jH∂ iH∂jH − ∂ i∂jH∂iH∂jH − ∂i∂
j∂ iH∂jH = 0,

which does not hold for all i 6= j if b1b3 6= 0.
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Relativistic undulator

In the absence of the electrostatic potential, W (~x) = 0, the
relativistic Hamiltonian expressed in the instant form (see,
e.g., [Heinzl and Ilderton 2017]),

Hrel =
√

1 + (pA
j )

2 + W (~x),

is a function of the nonrelativistic Hamiltonian. Therefore the
same algebra of integrals is present in the relativistic case a well.

This is crucial for the potential application, namely numerical
modelling of electron bunches in helical undulators, which is a key
component in free-electron lasers (FEL). (Our system describes
only single electron and neglects the produced radiation.)
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Implementing the undulator

Helical undulators can be implemented by redistributing the
solenoidal (constant) magnetic field by a ferromagnetic helix [Balal
et al. 2017] or by an array of magnets [Varfolomeev et al. 1993].

Figure: Configuration of magnets producing the linear, respectively
helical, undulator field [Spezzani et al. 2011].
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Conjecture – subgroup vs. nonsubgroup coordinates

We have demonstrated integrability with generalized cylindrical
integrals, but excluded with generalized spherical. Generalized
Cartesian were found elsewhere [Marchesiello and Šnobl 2017]

X1 = p2
1 + ap2

2 , X2 = p2
2 + bijpipj + . . . , a, bij ∈ R, i 6= j.

All systems found so far separate in Cartesian or cylindrical
coordinates in the limit ~B → 0.

We conjecture that this is because Cartesian and cylindrical
coordinates are subgroup type coordinates, related to the two
maximal abelian Lie subalgebras of e(3), namely
A1 = span{p1, p2, p3} and A2 = span{p3, `3}, respectively.
(Spherical coordinates have A = span{`3, L2}.)
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Conclusions

When magnetic field is present, there can be quadratic
integrals not connected to separation of variables.
We have classified integrable systems in the generalized
spherical and cylindrical cases. Only generalized cylindrical
admits new systems.
We conjecture this is connected with the presence of maximal
abelian Lie subalgebras of e(3) in Cartesian and cylindrical
coordinates, absent in spherical coordinates.
We have found the first (minimally) superintegrable
generalized system. Its Hamilton–Jacobi equation does not
separate in any coordinates systems.
The superintegrable system models the (relativistic) helical
undulator, a key component of free-electron lasers.
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Thank you for your attention!
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