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The commutater of the Hamiltondan with the operator corresponding to any physical quantity gives the
operator which corresponds to the time derivative of that quantity. One can ask, hence, whether the postu-
late, that the quantum mechanical operators obey the classical equations of motion, uniguely determines the
commutation relations, The answer is found to depend on the form of the Hamiltonian and is in the negative

for a free particle and for the harmonic escillator.

1 SCHRODINGER' obtained his wave mechanical

* prjuation by postulating that the waves” motion
correspond to the classical motion of a particle if the
field of force in which it is moving does not change too
rapidly with position. Later on, Ehrenfest® has shown
that Schridinger’s work can be summarized most
neatly by observing that the operators in the Heisen-
berg picture satisiy the classical differential equations:

g=p/m; p=—aV/ax (1
if one assumes that the Hamiltonian has the simple form
H o 2 2= T{x), (2}

As is well known, the time derivative of any operator
in the Heisenberg picture is its cemmutator with the
Hamiltonian 2o that (1) is equivalent with (2) and

(i/R)LH, q)=p/m; (i/B)[H, p]=—aV/dx, (la)

(/e qd=p: G/RLV, pl=—aV/iox,  (3)

1 E. Schradinger, Abbendlungen sur Wellenmechanik (J. A. Barth,
Leipalg, 1927).
til:'. Ehrenfest, Zeits. {, Physik 4, 435 (1927).
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These equations are usually derived from the Heisen-
berg-Born-Jordan relation

I:Ps 'ﬂ= —ih. (4)

Since, however, (1) and (la) have a more immediate
physical significance than (4) (see in particular Ehren-
fest's discussion), it is natural to ask whether, con-
versely, (4) can be derived from (la). The present
writer has considered this question some time ago but
its significance in consequence of Heisenberg's recent
paper® and of their own work has been pointed out to
him only recently by Pais and Uhlenbeck.

Some doubt on the fundamental nature of relations
of the type (1a) must arise, of course, even apart from
the results of the present analysis, by the ohservation
that Dirac's equation of the electron does not lead to
the classical equation of motion for the operators.
Furthermaore, because of the non-commuting character
of the p and g, there are many forms in which the
Hamiltonian can be written, In particular, in the ex-
ample to be discussed below, H=4$(x+iv){x—i2) could

*W, Heisenberg, Zeita. §, Physik 123, 93 (1944), p. 108 .



have been written for the H of (5) and this would have
altered the final result. In spite of these objections and
ambiguities, it was felt that the above mentioned
articles justify the publication of evidence that (4) is
not a consequence of (1a).

2. The example which we shall consider is that of the
harmonic oscillator. It was chosen because it seemed
the simplest example except for the case of a free
particle. This latter is, however, clearly anomalous be-
cause the second equation of (la) is identically ful-
filled. It so happens that the example of the harmonic
oscillator is also the relevant one from the point of
view of the considerations of Pais and Uhlenbeck.

Since the purpose of the above-mentioned considera-
tions*! is to avoid using Hamiltonian theory, we shall
write the energy

H=}(x*+1) (§)

of an oscillator of mass one and classical frequency
1/2m, in terms of coordinates and velocity rather than
coordinates and momenta. If we choose units in which
h=1, the fundamental Egs. (1a) become

v=a=1i[H, x] (6a)
p=—x=i[H, v]. (6b)
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3. The simplest method to solve Egs. (5) and (6)
seems to be essentially that of Born and Jordan.® One
assumes that H is diagonal, its diagonal elements,
which are because of (5) all positive, shall be denoted by
E,, E,, E,, ---. Then (6a) and (6b) read for the matrix
elements x,, and v, of x and v

Vam=1(En—Em)Tnm (7a)
= Xam = Ep— Em)Vnm. (7b)

Combining the two equations, we have
Tam= (En—Eun)*pm. (8)

It follows that x,, can be finite only if E,—E,,=+1
and it follows from (7a) that v, vanishes if x,, does.
As a result, the E, which are connected by a finite
matrix element of either x or v form an arithmetical
series

E.=Eyt+n 9
if we restrict our attention to irreducible systems of
operators satisfying (6).

*W. Heisenberg see reference 3; A. Pais and S. Uhlenbeck
(to be published).
§ M. Born and P. Jordan, Zeits. f. Physik 34, 858 (1927).
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Off hand, every E, of (9) could occur in the diagonal
form of H several times. It appears, however,® that one
can decompose any system of matrices in which E,
occurs more than once by means of a unitary trans-
formation which leaves H unchanged. Hence we can
assume that all characteristic values (9) are simple.

Among the matrix elements x,, only those of the
form %an41 and xu41. can be different from zero; the
former can be made real and positive by a transforma-
tion with a unitary diagonal matrix. Because of the
Hermitean nature of x, the x,,1,=2xuns1 will then be
real also. The matrix elements of v will be purely
imaginary:

Unntl1= _ ixrxn-t—].: - ixn-l—lﬂ: (10)
Unt1n=1Xnt10= —Unasl
as follows from (7a) and (9).

So far, the w1, %19, %23, - - - are entirely free but only
(6) is satisfied. In order to fulfill (5), we have to calcu-
late 3(x*+1%). One notes that this is, as a result of (10),
automatically a diagonal matrix, the diagonal element
corresponding to E, being

Eﬂ:Eﬂ'-l-H':be—lﬂz—i_xﬂﬂ'!'lEj (11}

except that xo,°= E,. Hence the x,,,1 can be determined
one after another

Tnne1=(Eo+3n)! for even n (12)
Ynner=(Gn+3)}  for odd n.
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The commutator of v and x is also automatically di-
agonal as a result of (10), its diagonal elements are
— 2ixor?, — 2i(x18 —201?), —2i(x25"—2127), - - . Because of
(12), these are "—Z’EEQ:, mzifl—Eu), —ZI-En, ‘—21'[:1—Eﬂ],
-+ +. The usual solution is, of course, Ey=% and, hence,
[v, 2]=—1. Our somewhat more general solution can
be written as

([v, x]+i)*=— 2E,— 1)}, (13)

E, being a constant characterizing the solution.

It is worth noting that for large n, all solutions
converge to the usual one. It may also be worth men-
tioning that the situation here described obtains for a
large class of quantum mechanical problems. However,
there are other cases in which the equations of motion
entail the relation [v, x ]= —ik/m. A trivial case of this
nature is that of a potential which is a linear function
of the coordinate, V(x)=aa® is a less obvious case
therefore,

% This question will not be further pursued since not even those
solutions of (5) and (6), in which every diagonal element of H
occurs only once, are all equivalent to the usual solution.
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The purpese of the present note is to show, with the aid of an elementary example, that the commutation
rules, which are usually given the rule of postulates in quantum mechanics, are in fact not arbitrary, pro-
vided that a more stringent definition of the Hilbert space and a strict expansion theorem are adopted.

I. INTRODUCTION

N this note the following problem, which has been

recently treated by Wigner,' is considered again.
In the formulation of quantum mechanics, one often
wonders whether it is possible to reverse the ordinary
procedure, in which the commutation relations are
first postulated as a generalization of the classical
poisson bracket and then the equations of motion are
deduced. The problem is whether one can derive the
commutation rules from the equation of motion taken
over from the classical theory, together with the postu-
late that the energy isa time displacement operator, i.e.,

f=Lf, ), (1)

where f is any dynamical variable of a given system
and H the total hamiltonian. By way of illustration,
we shall consider the case of an harmonic oscillator
where H=1(+%") with k=w=1. Here one notices
that H is itself a function of x and &, where i is defined
by #=[x, H]. Thus a relation of the type (1), with
f=f(x, &), is a complicated relation between the com-
mutators. The conclusion which Wigner arrived at in
this example is negative; i.e., the correct solution
[x, 2]=1 does not follow uniquely. It will be shown in
the present note that by properly formulating the

1 E. P. Wigner, Phys. Rev. 77, 711 (1950).
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conditions, including a more stringent definition of
Hilbert space and a strict expansion theorem, the
commutation rule will follow uniquely, though with
less stringent definitions other solutions cannot be
excluded.

Tt must be stressed that whether or not a state is
physically permissible, cannot be seen clearly without
referring to a special representation. Hence, it is the
suitable boundary conditions in a special representa-
tion, laid down on physical grounds and in general
being different for different systems, that serves to re-
strict wave functions to a certain special type, to in-
clude at the same time all permissible ones, and thereby
to mark precisely the complete Hilbert space in which
the state of the system is depicted and its operators
apply.

For the oscillator one requires that the eigenvalues
of x and # form continuous spectra and extend from
— o to 40, and that H be positive definite.? These
restrictions do not suffice to mark completely the
appropriate Hilbert space. For this purpose one has to
impose restrictions on the energy eigenfunctions ¥a(x).
Here we have, as is obvious on physical grounds, a
natural boundary condition, ie., Yn(x}—0 as x—==
for all ».

Tt is then sufficient to deduce that H is discrete [sec (10)]



We summarize the conditions for the deduction of
the commutation rule in the case of the harmonic
oscillator.

(a) Hamiltonian H=3}(x*4?)

(b) Equation of motion £+4x=0

(¢) The complete Hilbert space for the system de-
fined by the complete set of energy eigenfunctions ¥ .(x)
satisfying the boundary condition that y,.(x)—0 as
g (—oo <zt w)

(d) Superposition principle in the Hilbert space de-
fined in (c). By (c) and (d) we require that any physi-
cally admissible state represented by a wave function
satisfying the boundary condition in (c) shall be ex-
pansible in terms of the set of energy eigenfunctions.
Here we need the stringent definition of the expansion
theorem; for an arbitrary admissible wave function
f(x), we require that the expansion

iﬂa#ﬂn[x)

converges absolutely and uniformly to f(x). If a less
stringent definition is adopted, namely,

iﬂam(x)

converges to f(x) only in the mean

0 N
lim | f(x) —ﬂ%a#n{x} |2dx=0,

Nasanod

then we cannot rule out other possibilities than [x, &
=1. These conclusions, however, cannot be reached
without referring to the x-representation where a
natural boundary condition can be laid down.
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II. DEDUCTION OF THE COMMUTATION RULE
From (1) and (a) with f=x, it follows that
d=[x, §4*]=§(ilx, ]+ [x, 2]5).
Introducing S=[x, £ ]—1, one has
{5, 2}=0, (2)

where the curly bracket is the anti-commutator. From
(1) and (b), one has similarly

{§, x}=0. (3)
From (2} and (3), it can easily be shown that
[ a]=[5,4]=0, [S,H]=0

which shows that S is a constant of motion, and that
57 is a real numerical constant.

In the x-representation, (2) becomes (x'4x")
X {x'|§|x")=0. Hence it follows that

('] S| 2"y =cla)8(a"+2") (4)
where ¢(x") is an arbitrary function of %, and the

hermitian property of S requires that ¢(z’)=c*(—x').

Hence in the x-representation one can write

S=c(x)R, (5)
where R is the reflection operator defined by
R|x}=[—=), (6)

From this representation of 5, one obtains the explicit
operational form of #;

? i )
f= —i—t g(x)+i—R,
dx 5 2
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where g(x) is real. It can be shown that the term g(x)
can be removed by properly choosing the phase factor
in the x-representation. Using a star to denote the
operator in the new representation, one has

d\* d 4 dy
(—-) = g W — -
dx dx dx dx
R¥= v Rpiv=gliv- P

where y is a real function of x, and y_ is the odd part
of y. If for y one chooses y= JS=g(x)dx, (7) becomes

!

. : a\* : () * P iy—
x——t(g) +1 ExR’ ¢ (x)=c(x)etiv—,

Dropping the stars and the dash, and with the help
of (2), one can show that ¢(x) is a numerical constant,
thus obtaining
d ic
f=—i—+—RK. (8)



Wigner algebra

Wigner algebra is linked to the Calogero model.

82 82 w2 0 g
H = - _ R _
92 o2 T @ @) s
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Yang-Hamiltonian is self-adjoint.
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The problem of Yang differential

. d ic - 1C ~
Yang — e — " RA
DYan9 A (dm 2$R) A=——RA#0.

A is a constant.
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A d v .
D" = [EJFE(l—R)]

Superposition of Differential and Difference Operators

A d 7, R
pa = [L4%an]an
}%feven(ir) — feven(fl?)g
Rfodd(x) = —foad(x)
. d .
C. F. Dunkl DY = o for even functions
T
Trans. Am. Math. Soc. 311 (1), 167 (1989). X d 2y
DY = o + —  for odd functions
T x
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Some properties:

e Linear

D, (af(x) 4+ bg(x)) = aDy f(x) + bDrg().

* Dunkl Leibniz rule

D (f(x)g(z)) = (Dzf(x))g(x) + f(2)Dzg(x)

If f(x) or g(x) is even, then we obtain the ordinary Leibniz rule

174

(1 =P)f(@)][(1 = P)g(z)].

T

* Dunkl chain rule
df du v

D.f(u(z)) = S35 + Z[f(u(2) = f(u(-2))]

If u(x) is even, then we obtain the ordinary chain rule
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Action on monomial

D,z" = [n],x" ",

where v-deformed number is defined by

nl, =n+v(l—(=1)").

=2 2k], =2k, [2k+1], =2k+1+20 (k=0,1,2,...)
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Dunkl-Wigner algebra

. L d .
P = —1D” = —1 [@4‘;(1—}%)]

r =

[, p] = i(1 + 2vR)
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Dunkl! derivative is anti-Hermitian

(2| D"1) = —(D"4)2lt1)

Dunkl-innerproduct (f\g)—/_m g* (x) f(z)]x[* dz,

Dunkl-momentum operator is Hermitian

r h ¢ _h
()= Py = [ dup GPEWE — [ dup (O D)

08.09.2022 AAMP 2022 - Prague



Dunkl Laplacian

* |n one dimension
Vi o= (D)= 5+ 2 (- R

* Intwo dimensions ( Two Wigner parameters and reflection operators)

Vi = (D)4 (D7)
0? 0? 201 O 205 O % o U9 o
= 3. +3y2 + - 3$+ Y oy _E(l_Rl)_g(l_RZ)'

R;D; = —D;R;; D;, D;| = 0; (i, D] = di5 (1 +2p;,. RS{J,) . (no summation)
» Reflection operators with respect to x_i=0 plane

R.f(x,y) = f(=x,y), Ryf(x,y) = f(x, —y).
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* Inthree dimensions ( Three Wigner parameters and reflection operators)

V: =D+D;+D;

o° o0° 0 2v,0 2,0 2v,0 v
st +—+ + + -—

oX~ oy~ oz X OX Yy oy 7 0L X

(1-R)--Z(1-R,) -2 (1-R,)
y Z

le(ﬂ?,’y,Z) — f(—:r,y,z), ﬁgf(ﬁ:,?,Z) — f(ﬂ" _yaz)r _E%gf(TyZ) :f(.l’,?,—z,‘).

* Dunkl angular momentum operator

LY = —i(zD,"* — yD,"")
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In polar coordinates (Two Wigner parameters and reflection operators)

v2 _ o +1+2v1+2v2 o 2 B
> op? P op p° 7’
2 —_—
y __1 -+ (v, tanp—v, Cotgp) Vl(l R) VZ(]: ZRZ)
20 ago 2cos’ @ 2sIn” @
Reflection operators with respect to the plane x_i=0
R.f(p,@)=f(p,m —@), R f(p,0)=f(p,—¢).

In spherical coordinates (Three Wigner parameters and reflection operators)

Rl (U ('T', 6": ‘p)

2
V2 - 1 62_1+v1+v2+v3 0 +£r2+2i_8¢+i2N0
2 Or r or 2 F°sin @ r
1 6° %) 1%
N, =—= + (v, tan @ — —+v +v.,)cotd E 1-R
)= (VAN (S vy 1) COLO) S (1-R))
— 71/) (T: 9 T — (79) 3 RE’.L) ('T', 91 '\P) — w (Ta 9 _‘19) . R%L/’ (Ta 91 #7)

=1 (r,m—0,p).
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Abstract For a better understanding of the physical systems, even at the quantum level, the thermal quantities can be investigated.
Recently, we realized that the parity of the system can also be examined simultaneously, by substituting the Dunkl operator to the
ordinary differential operator in quantum mechanics. In this manuscript, we consider two relativistic Dunkl oscillators and investigate
their thermal quantities with well-known statistical methods. Besides, we establish a relationship between the Dunkl-Dirac oscillator
and the Dunkl-Anti-Jayne—Cummings model by defining the Dunk creation and annihilation operators. Therefore, we conclude
that our model can be regarded as an appropriate scenario for the theory of an open quantum system coupled to a thermal bath.
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Dunkl-Klein-Gordon oscillator

One dimensional stationary Klein-Gordon oscillator

I:E2 — (lf) +I'ma.l.f) (—f) —fma;r:f) —mz]w{_t) =0,
i [

Dunkl-Klein-Gordon oscillator

d> 2u d
[d 5 + M i %(1 —5) — mrw?x? +mw(l +2us) + E* - mz};fl‘g(.t) = 0.
X x dx x

where X _
Ry (x) = s (x) with s = =.

Introduce P

y = mwx Ansatz Us = yl—?ﬁe—ixpﬂ(y)'
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d? d 1+2 E? —m?
Y (N P = wt(y) =
dy 2 y 4 4 4
Confluent hypergeometric equation
Qu+1D(1—s) E?*—m? s
WS = CF — 1 — =+ g .
n(Y) ( 1 y— 5ty
Stationary wave function
g s _mo2_ [(QRu+1(1—5) E?>—m? s 5
Vi (x) =C(mwx) 2 e 2 F — A — =+ usmox” ).
4 dmw 2

m

E® |
”::I:\/4nr+2r(,u+)(l—s)+l where r = w/m.
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Fig. 1 Reduced probability densities versus coordinate
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Fig. 2 Dunkl relativistic energy
spectra versus the node numbers,
where r = w/m
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Dunkl-Dirac oscillator

Hpv = ESy°,

Dunkl-Dirac Hamilton operator
. LA
Hp = |ox| =D —ipmwx | + Pm |,
1
Considering the following spinor and Dirac matrices

() ) G0

mwx2 \)

v, = Ns(mwx)l?g_ 2 _i |: d (P‘Jfé)“”:| F(—n, 1 — 5 +,u.;mcux2).

(E4+m) | dx X
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Establish a connection between Dunkl-Dirac oscillator and quantum optics, we introduce Dunkl-creation and
annihilation operators

+ 1 ~
iy = (o — nb).
2mhaw
1 ~
ap =—(ma)55 + ED),
V2mhw

satify

Dunkl — Dirac Hamiltonian

Hp :g(g—aD +a+a;_)) +ma,,

with
ot = %(C"x + J}-‘)- corresponds to Dunkl-Anti-Jaynes-Cummings model.

It reduces to AJC model, if one takes Wigner parameter as zero.
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Thermodynamics of relativistic Dunkl-oscillators

* The system is in thermal equilibrium with a termal bath at the
temperature, T.

Eﬁ. _ LE}

A T T Kol
ZP=Y e FT

n=>0
where K p is the Boltzmann constant, and E, is the ground-state energy corresponding to n = 0.

After testing the convergency of the series

+00 p) 2
/ g—%\f””’dx = L(l +t\/5)e_%‘/g, fort > 0.
0

a
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We use Euler-MacLaurin formula

Do rap-ng),

Y f) = f£(0)+ f 7 fdx - Z

— 0 (2p)!
where B, are the Bernoulli numbers, i.e., By = 6= By = %, and Bg = % )
1 1
(1) L)) )0
> s =10+ [ r@dx = 35500+ 25 0 = 25 OO+

Partition function

Z‘*—l+ %T+r2+ d +0O
2 2r 2r 6. /a5t

1 KgT T ®
g =2r|—+p)(1—=s)+1, 1 =, r=—
. m To m

where Ty = ﬁ% is the characteristic temperature that splits the range of temperature to very low temperature, 7' << Ty, and very
high temperature, T >> Tp, regions We observe that only in the odd case the Wigner parameter value takes a role.
in the high-temperature regime, ' — o0, the Dunkl parameter’s contribution remains negligible 7t — 7 — 1'_2
2r
08.09.2022
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F’=—1tInZ°,

;
+ 1. /a5) + - Cfs]'

_+i(
> T\t

1

FS = —rln|:
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arXiv:2112.09948v1 [quant-ph]

Dunkl-Klein-Gordon equation in three-dimensions:
The Klein-Gordon oscillator and Coulomb Potential

B. Hamil*
Département de TC de SNV, Université Hassiba Benbouali, Chlef, Algeria.

B. C. Liitfiioglu'
Department of Physics, Akdeniz University, Campus 07058, Antalya, Turkey,
Department of Physics, University of Hradec Kraloveé,

Rokitanského 62, 500 03 Hradec Kralové, Czechia.

Abstract

Recent studies show that deformations in quantum mechanies are inevitable. In this contribution, we consider
a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation and
we investigate solutions for two important problems in three-dimensional spatial space. To this end, after
introducing the Dunkl quantum mechanics, we examine the Dunkl-Klein-Gordon oscillator solutions with the
Cartesian and spherical coordinates. In both coordinate systems, we find that the differential equations are
separable and their eigenfunctions can be given in terms of the associate Laguerre and Jacobi polynomials. We
observe how the Dunkl formalism is affecting the eigenvalues as well as the eigenfunctions. As a second problem,
we examine the Dunkl-Klein-Gordon equation with the Coulomb potential. We obtain the eigenvalue, their
corresponding eigenfunctions, and the Dunkl-fine structure terms.
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Dunkl-Klein-Gordon oscillator in 3-dimensions

, 1 1 . I
{Ez - (—_Dj -+ imw-.;!:j> (—,DJ- — -imw.-r.‘j) — mz} 1w =0; with j =13,
i 1

i i i 3 i i i i i i i E
{—D‘f — Dé — Dﬁ — 2mw (,u]R] + poRo + s Rs + 3> + m2w? (Jf + ré + 4%)} ) = (Ez — 'ﬂ'i.-z) Y.

Solution in Cartesian coordinates

E’—m? = &£ +&+E&,
v o= Y(xy)(x2) Y (x3),
H = Hi+ Ho+ Hs.
where
H; = _Dj-.’ —mw (1 4+ 2u;R;) + m2w?z?, j=1,2,3.

J
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Reduced probability densities versus coordinate.
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Solution in Spherical coordinates

a* ‘ 3 1 L2 :
{5&?"1 + 2 (2 cot @ — py tan ) - > oo (1—R;)— Sn’ o (1—R)+Q°®(p) = 0,
a* a 0 i3 0* 2
— + cot f— + 2 + p2)cotf — pstanf) — — —— (1 - R3) — ——+w O () = 0,
{593 cot b7 +2 (11 +p2) cot§ —ps tanb) 75 — =g (1 - Ra) = 257 ©) '
97 2(1 2+ pz) 9 2 2 : 3 w? . .
{r - + (L4 p + o + pis) L —m W'+ 2mw (=4 R + paRe 4+ psRz | — —+E*—m’yF(r) = 0,
or? r or 2 re

ENoy™ =42mw2(N +v+0) + p1 (1 — 51) + pa (1 — s2) + p3 (1 — s3)] + m?.

We observe that the energy spectra depends on parity and Wigner parameters in addition to the usual
guantum numbers.
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Coulomb potential

Stationary Dunkl-Klein-Gordon equation with Coulomb potential

Ze2\? 02 2(1+py + po+ p3) O J. To ‘
E+ — : - —m* 31 =0
( N r ) " or? i r or " r2 sin” @ * RN

- i —l;"?

Z2e4

Epo ,(Z)=m 1+ 5

. 2 .
(-n + 35+ \/(.u,l +po+pz+20+20+ 3) — Z‘:‘:t’:‘j‘)

4

08.09.2022 AAMP 2022 - Prague



08.09.2022

arXiv:2208.11729v1 [cond-matt.mes-hall]

Dunkl-Graphene in constant magnetic field

B. Hamil*
Département de TC de SNV, Université Hassiba Benbouali, Chlef, Algeria.

B. C. Liitfiioglu'
Department of Physics, University of Hradec Kralové,
Rokitanského 62, 500 03 Hradec Kralové, Czechia.

Abstract

Graphene-based materials are thought to revolutionize entire industries. Therefore, many research are
being carried on graphene theoretically and experimentally. On the other hand, recent studies show that the
use of Dunkl derivative, instead of ordinary derivative, allows the concept of parity to be interpreted together
with other physical quantities. In this manuscript, we investigate the thermal quantities of graphene under
the constant magnetic field with the Dunkl-formalism. We observe that only at low temperatures Dunkl-
parameters, thus parity, modify the conventional results.
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Investigation of the Dunkl-Schrédinger equation for Position Dependent
Mass in the presence of a Lie algebraic approach

P. Sedaghatnia’, H. Hassanabadi "] W. S. Chung®, B. C. Liitfiioglu %, S. Hassanabadi
and J. K¥iz
T Faculty of Physics, Shahrood University of Technology, Shahrood, Iran
P. O. Box : 3619995161-316.
} Department of Physics, University of Hradec Kvilové, Rokitanského 62, 500 03 Hradec Krilové, Czechia.
§ Department of Physics and Research Institute of Natural Science,
College of Natural Science,
(yeongsang National University, Jinju 660-701, Korea
¥ Department of Physics, Akdeniz University, Campus 07058, Antalya, Turkey.

Abstract

Recent studies have shown that the use of Dunkl derivatives instead of ordinary derivatives leads
to deriving parity-dependent dynamic solutions. According to this motivation in this manuscript,
we formulate the Dunkl-Schrodinger equation within the position-dependent mass formalism and
derive an algebraic solution out of it. Our systematic approach lets us observe some new findings
in addition to the earlier ones. For example, we find that the solution of the Dunkl-Schrodinger
equation with position-dependent mass cannot be considered independent from the choice of pa-
rameters. Similarly, through the sl{2) algebra, the energy spectrum and the corresponding wave
functions are derived in terms of possible Dunkl, (u), and mass, (o), parameters.

Keywords: Dunkl derivative; Position-dependent mass: Quasi-Exactly Solvable (QQES): s1(2) Lie algebra.
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Energy corrections of the two dimensional Dunkl harmonic oscillator in the

Non-Commutative phase-space

S. Hassanabadi '*, P. Sedaghatnia !, W. 8. Chung **, B. C. Liitfiioglu !

J. K¥iz Y and H. Hassanabadi 2|
! Department of Physics, University of Hradee Krilové, Rokitanského 62, 500 03 Hradec Krilové, Czechia.
* Faeulty of Physics, Shahrood University of Technology, Shahrood, Iran
P. 0. Box : 3619995161-316.
* Department of Physics and Research Institute of Natural Science, College of Natural Science,

Gyeongsang National University, Jinju 660-701, Korea.

Abstract

In this paper, we examine the harmonic oscillator problem in non-commutative phase space (NCPS) by
using the Dunkl derivative instead of the habitual one. After defining the Hamilton operator, we use the
perturbation method to derive the binding energy eigenvalues. We find eigenfunctions that correspond to
these eigenvalues in terms of the Laguerre functions. We observe that the Dunkl-Harmonic Oscillator (DHO)
in the NCPS differs from the ordinary one in the context of providing additional information on the even
and odd parities. Therefore, we conclude that working with the Dunkl operator could be more appropriate

because of its rich content.
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Generalized-Dunkl operator D By — i _|_ @ + — R 4~y i}?

- Or 'Oz

W. S. Chung, H. Hassanabadi, Eur. Phys. J. Plus. 136, 239 (2021).

M =7, ﬁl = —0y

- 0J | d " 0
Dy = Or * T (1—Fa)+ "%Rl b +F}{f3_IRh

R. D. Mota, D. Ojeda-Guillen, arXiv:2207.10048v2 [quant-ph].

Yi = () and SI = —y

Ordinary-Dunkl operator
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Relativistic Solutions of Generalized-Dunkl Harmonic
and Anharmonic Oscillators

S. Hassanabadi '*, J. Kiiz '", B. C. Liitfiioglu ' *and H. Hassanabadi "+ **

lﬂegmrrmem of Physics, University of Hradec Krdlové, Rokitanského 62, 500 03 Hradec Kralové, Czechia
3 Faculty of Physics, Shahrood University of Technology, Shahrood, Iran

Abstract

Dunkl derivative enriches solutions by discussing parity due to its reflection operator. Very
recently, one of the authors of this manuscript presented one of the most general forms of Dunkl
derivative that depends on three Wigner parameters to have a better tuning. In this manuscript,
we employ the latter generalized Dunkl derivative in a relativistic equation to examine two di-
mensional harmonic and anharmonic oscillators solutions. We obtain the solutions by Nikiforov-
Uvarov and QES methods, respectively. We show that degenerate states can occur according to
the Wigner parameter values.

AAMP 2022 - Prague



Non-relativistic particles in the polar coordinates in the
presence of Generalized Dunkl derivatives

S. Hassanabadi **, J. K¥iz '%, B. C. Liitfiioglu ** W. S. Chung 2%,
P. Sedaghatnia *1and H. Hassanabadi " *'

lﬂeparrmfm of Physics, University of Hradec Kralové, Rokitanského 62, 500 03 Hradec Kralové, Czechia.
2Department of Physics and Research Institute of Natural Science, College of Natural Science,
Gvyeongsang National University, Jinju 660-701, Korea.
RFacm'n' of Physics, Shahrood University of Technology, Shahrood, Iran
PO. Box 3619995161-316

Abstract

In this paper, we considering the generalized Dunkl derivatives for non-relativistic particles.
First, we written them in Cartesian coordinates and then converted them to polar coordinates.
Then we examined the eigenfunctions and eigenvalues once in the presence of the harmonic os-
cillator potential and once 1n the presence of the Coulomb potential.
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