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talk about harmonic oscillator twins

(x —d)? x>0,
V@) = Viglo) =

(x+d)? z<0

Q curiosity in physics: never mentioned in the textbooks on quantum mechanics

Q motivation in math: relevant. i.a., in the Thom’s catastrophe theory (TCT)

Q reference: MZ, Quant. Rep. 4 (2022) 309 (arXiv:1607.01297v2)
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Figure 1: Double-well harmonic oscillator at d = 2.
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A. exact solvability: alternative definitions



> main task: find

> Schrodinger equadtion

quantum bound states

in 1D

_dd_;?/fn(it)—l—‘/(x) Un(®) = Enthn(z),  ¢nlz) € LQ(R), n=201,...

> if analytic V(x) then Darboux/SUSY — ES (exact polynomial solvability)

> or QES (quasi-exact polynomial solvability)

> else: square-well, etc — ‘matching method‘ — trigonometric formulae




& today: numerically inspired innovation
> standard 3D shooting method used in 1D

> idea (AHO, MZ 2016): 3D know-how (V(x) = V(—z)) + matching (at z = 0)

> simplification: use special functions — old concepts with new names emerge:

> NS (non-polynomial solvability)
> QNS (quasi-exact non-polynomial solvability)

> previous results: DW exponentials (Bessel functions), DW Morse (Gauss functions)



B. elementary model



1st question: where is our model relevant?

answer: in a quantized TCT (p.t.o.)



& the Thom’s classification of bifurcations

> the classical equilibria = minima of Lyapunov function, i.e., e.g., of

V(z) = V) (z a,b) = 2t + ax? + b

which yields,

in the a — b plane, a spiked, cusp-shaped boundary between

> the single minimum regime (at a > 0) and the

> DW regime (at a < 0, with a not too large b)

> J applications (e.g., Josephson junction between BECs — Goldberg et al, 2019)

> but not in the consequent quantum theory, due to tunneling
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& in the quantized TCT

the general and universal Arnold-Lyapunov polynomial
V(z) = (z,a,b,c,...) = 2" + ax®® + b2® 1 + ..

was locally approximated by the DW-like HOs:
MZ., Arnolds potentials and quant. catastrophes, Ann. Phys. 413 (2020) 168050,

https://doi.org/10.1016/j.a0p.2019.168050.
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Figure 2: Quantum levels in the “butterfly” potential V(x) = 2® — 61/25 2% + 36/25 22
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V' in detail:

> in the deep-well regime we approximate
VPN (Ry +€,0,b) = VP (Rea,b) + 01 €+ OE°) by

V(z,a,b) = min[w? (z = R-)* + D_, &} (¢ = Ry)* + Dy]

> then the quantum bifurcation occurs when w? ~w? and D_ ~ D

> so that in units s.t. w =1 we get our model, | Vg = 2? — 2d|z| + &* |
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2nd question: key merit of DW HO?

answer: exact Jost solutions available!
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> 3 asymptotically correct (and known, confluent hypergeometric) [(z) ~ 1)

& user-friendly standard matching rules:
& consider parity: ¥ (x) = ¢(x, E,p) = (—1)?¢(—x, E,p) withp=0or p=1
& normalize: lim, o) (2, E,0) = Ny #0, limx_m(wff))’(x, E1)=M#0

& use b. ¢*. on half-line: lim,_,o(¢v™)) (2, E,0) =0, lim,_,0 ™) (2, B,1) = 0.

& ‘the simplest QNS ‘ N =1 single-well example: d@V%) = 1, F = E((]QNS) =3,

(1+z)e=/2) x50

0" () 2
(1—2) e (@ /275”), r<0
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Figure 3: QNS ground state at d = —1.
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consequence: all NS & QNS by matching!
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C. non-polynomial quasi-exact states (the method)
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@ quartic QNS AHO model with | ¢(z) = P(x) exp W (x)

qr +ra® + sxd + 2t r <0,
V(AHO)<$) _

—qr +ra?—sxd+ a2, x>0,

> method = the matching of both of the |elementary ansatz| branches at x =0

> reference:

MZ, Symmetrized quartic polynomial oscillators and their partial exact solvability.
Phys. Lett. A 380 (2016) 1414 - 1418 (doi: 10.1016/j.physleta.2016.02.035) (arXiv:1602.07088)
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© the main trick: the branching of asymptotics (with @ =a and b=b),

Wiepn(z) = +2*/3+ax®> +bx, x<0,
W(non—analytic) ((L’) - R
Wirighy (x) = —2*/3+ax* —bx, x> 0.
® the N = 2 ansatz for ¢(©*(x) with Pyepy(z,n) = (1 + uz + va?) yields
> 2 WKB constraints, —vs +4av =0, 4ad*v+4au—vr—us+2bv=0,
> obligatory linear coupling ¢ = ¢q(a,b) =4ab+ 6

> obligatory energy E = —p, i.e., E = E(a,b,v) = 2% — 10a — b?,

> plus the two matching constraints (P.T.0O.)
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> the two remaining equations are

4bv —q+4dab+bu+2+6au—up=0, 2a+2but+2v—p+b*=0.

> the first one offers the two eligible wave-function-coefficient roots

1
V== (—2ab+2j:2\/a262—2ab+1—2b3>

> the second one leaves the real value of b # 0 independently variable,

1
a:ai:—<—7b3—8i3\/b6—12b3+16) .
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Figure 4: The QNS ground state in the N = 2 quartic potential at positive b = 1:

Vi(z) =F3 (1+1/V5)x+ (2+9 (—1+1/\/5)2/4) 2?F3 (-1+1/V5) 2® + o
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Figure 5: The second excited state at negative b = —1.
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& in the general case we get N + 1 recurrences forming the linear eigenvalue problem

Mo Mo Moo 0 0

Vo Vo
Mg My My Mz

U1 U1
0 My My 0

U =P Uy
0 Mpy_an—1 Mpy—on

0 Mny_in—2 My_inot Myoaw

UN UN

0 0 0 Mnpyn_1 My
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with £ = —p and with matrix elements

Mgy =(k+1)(k+2), k=0,1,...,N—2,

Mims1 =2b(m+1), Mpiim=-2(N—-—m), m=0,1,...

Mpn=4an+2a+b*, n=0,1,....N

which are linear functions of parameters a and b.
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D. present model: two types of its solvability
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§ preliminary remarks

> even our N =1 QNS ground-state wave function is clearly non-analytic at = = 0,

d_gw(QNS) (0+) — 2’ d3 (QNS) (O*) —_9

da3 0 da3 0

> due to the parity symmetry, it is sufficient to consider just z > 0

> | 3 both the NS solutions (N = co) and the QNS states (IV < 00)
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§ preliminary remarks ctd.

> the exponential factor is fixed, containing the displacement parameter d,
N
,¢(QNS/NS) (ZL’,E) _ e—x2/2+dx % Z ak(E) I’k, x> 0’ an # 0
k=0

> the parity-dependent energies E) are the roots of the matching rules

77b(Jost) (07 E(+)) =1, wzJost) (07 E(+)) =0

and
w(Jost)<Oa E(i)) =0 ) 7vDEJost) (0’ E(i)) =1.
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D.1. QNS solutions
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& N—plet of relations between N — 1 unknown coefficients as, as, ..., ay and d@V9)
> and £ = 1:

= odd case: solution cannot exist

= even-parity solution only exists at d = 0

> and E = 3: single constraint 2a¢g +2da; =0

= odd case: only d =0

= even case: the first nontrivial QNS solutions with d = £1

summary: demand that d # 0 (skip trivial HO)
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> and I/ = 5: two relations

4a0+2da1—|—2a2:0, 2a1+4da2:0.

= odd-parity: d = dy = il/\/§ and as = —d.
= even-parity: as = 1/2 and d = £+/5/2.

> , odd-parity: triplet of relations

2—1—2da2—|—3a320, d+a220,

easy solution az = 1/3, d = +4/3/2 and ay = —d.
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as +3dag =0



> , even-parity conditions
—2d +2daz+3a; =0, 3—d*+a;=0, az+3dag=0

> solution: quadruplet of eligible QNS shifts

9+ /57
d:t 4+ = ) —.

’ 4
every root defines the coefficients,

22 2
wr—1" BT er_3

Ao =
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v’ systematic approach

> normalization conventions: ayi; =anyy2 =... =0 and

apo=1, a1 =—-d, parity = even,
ay=0, a =1, ay=—d, parity=odd.

> SE equivalent to linear recurrences

(E—1-2n)a,+2dn+1) a1+ (n+1)(n+2)a,2o=0, n=0,1,...

> the last, n = N item fixes the energy, E@N%) = 2N +1

33



D.1.1. Even-parity problem

34



§ preliminary step (a)

> we will need the tridiagonal &£ by £ matrices

d 1 0 0 0
2N 2d 2 0
0 2N —2 4d 6 0
PR (d) =
0 0
0 2(N—k+3) 2(k—2)d (k—1)(k—2)
0 0 0 2(N —k+2) 2(k—1)d
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Q@ result (a): QNS bound states with even parity
Theorem 1 In terms of matrices PN*(d) the QNS wave-functions are known,

_1)k
Qg :CL](fN) = MdetP(Mk)(d), k= (172,)3,47...

Theorem 2 The QNS constraint ag\],\;)l =0, i.e., the polynomial algebraic equation
det POV (4) = 0

defines the N—plet of the admissible values of the shift parameter d = d/@N9).

36



Table 1: QNS equations at the first few V.

e Ol W0 N

—2+42d?
—5+2d?
3—-9d*+2d*

27 — 28 d? + 4 d*
—154+75d> —40d* + 4 d°

d+a, =0
—1+2a,=0
—8d+2d*+3a3 =0
11-2d?+12a,=0
29d —19d® +2d° +15a5 =0
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D.1.2. Odd-parity problem
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§ preliminary step (b)

> we will need the tridiagonal &£ by £ matrices

Q¥ (d) =

2d 2 0o ... 0
2N — 2 4d 6
0 2N —4 . - 0

ok —1)d  k(k —1)

0 . 0 2N—k+1) 2kd
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@ result (b): QNS bound states with odd parity
Theorem 3 In terms of matrices Q™N*(d) the QNS wave-functions are known,

(—1)*
eyt = apy) = G et QNR(Q), k=1,2,...

Theorem 4 The QNS constraint ag\],\;)l =0, i.e., the polynomial algebraic equation
det QW (d) =0

defines the N—plet of the admissible values of the shift parameter d = d/@N9).
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Table 2: QNS equations.

Ot s W N

—1+2d?
—34+2d?
3—12d> +4d*
15 —20d% 4+ 4d*

d+ay=0

—1—|—3a3:0
—5d+2d>+6a,=0"
7—2d*+30a5=0 -
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D.2. NS solutions
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Figure 6: The first three double-well NS wave functions at non-QNS d = 3/2.
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D. 2. 1. the single well scenario
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v’ single well in systematic approach

> the change of variables with d = —u? < 0,
r—d=+2€(—d,o00),

> Kummer’s equation with a = (1 — E)/4 and b = 1/2,

dw(z)
dz

10— )T qw(z) =0,

45

() = exp(=z/2) w(z).

z € (', 00)



> no branch point,

Wieven)(2) = M(a, b,2) = 1Fi(a,b,z) =

— (a) a_ ala+l) ,
— S S — 1 _ R S
Z(b)sslz T et T

s=0

Wodd) (%) = AP Ma—-b+1,2—b,2).

> asymptotic boundary condition,

L(1-5
Wphysical)(2) = U(a, b, z) = MM(G, b,z)+
rv-1
+ ( )Zl_bM(a—b+1,2—b,z).

['(a)

46



>atxz >0,

V(@) = (2, B) == exp(—(z + 1*)*/2) U((1 - E)/4,1/2, (z + p*)?) .

> numerical performance reflects our expectations
= ground state pushed up to Fy = Eo(—pu?) with Ey(—0.25) ~ 1.3349 and Ey(—1) = 3

= the second excitation moves from initial F2(0) =5 to Es(—1) € (8.658, 8.659), etc.
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D. 2. 2. the double-well scenario
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v' double well with d = v* > 0 in systematic approach

> the change of variables with a branch in x — d = ++/z under explicit control.

> initial boundary condition and oscillation theorem strategy with

@D(fﬂ) = ¢(Ia E) = () W(even) [Z(:E)] + Oy W(odd) [Z(x)] :

> matching at z = 0 (i.e., at z = v*) below the square-root branch.
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Table 3: The shift-dependence of the ground-state energy.

shift d

0.00 0.25 0.50 0.75 1.00 1.50 2.00 00

energy Fy(d)

1.00 0.76897 0.63553 0.59030 0.6189 0.80149 0.9514 1.00
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Table 4: The shift-dependence of the 1st-excited-state energy.

shift d

0.00 0.25 0.50

0.75 1.00 1.50 2.00

energy FEy(d)

3.00 2.4839 2.0608

1.7247 1.4685 1.15748 1.0358

1.00

o1




Table 5: Shift-dependence of the 2nd-excited-state energy (at d = 1 the state is quasi-exact).

shift d 0.00 025 050 075 1.00 1.50 2.00 oo

energy Fo(d) || 5.00 4.347 3.794 3.3447 3.00 2.649 2.735 3.00
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E. SUMMARY
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talk about harmonic oscillator twins

(x —d)? x>0,
V@) = Viglo) =

(x+d)? z<0

Q curiosity in physics: never mentioned in the textbooks on quantum mechanics

Q motivation in math: relevant. i.a., in the Thom’s catastrophe theory (TCT)

Q reference: MZ, Quant. Rep. 4 (2022) 309 (arXiv:1607.01297v2)
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THANKS FOR YOUR ATTENTION !
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SEE YOU ALL NEXT YEAR IN PRAGUE!
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